Spaces:
No application file
Update app3.py
Browse filesimport gradio as gr
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# Sample Data (REPLACE WITH YOUR ACTUAL DATABASE)
data = {
'event_id': [101, 102, 103, 104, 105],
'title': ['Hiking Meetup', 'Book Club Discussion', 'Gardening Workshop', 'Coding Class', 'Yoga Session'],
'description': ['Explore local trails', 'Discuss "The Great Gatsby"', 'Learn basic gardening', 'Python programming basics', 'Relaxing yoga practice'],
'tags': ['hiking, nature, outdoors', 'books, literature, reading', 'gardening, plants, nature', 'coding, programming, python', 'yoga, fitness, relaxation']
}
events_df = pd.DataFrame(data)
def recommend_activities(interests, num_recommendations=3):
if not interests:
return "Please enter your interests."
user_interests = interests.lower()
tfidf = TfidfVectorizer()
tfidf_matrix_events = tfidf.fit_transform(events_df['tags'])
tfidf_matrix_user = tfidf.transform([user_interests])
similarities = cosine_similarity(tfidf_matrix_user, tfidf_matrix_events)
top_indices = similarities.argsort()[0][-num_recommendations:][::-1]
recommendations = events_df.iloc[top_indices][['title', 'description']].values.tolist()
return recommendations
def create_event(title, description, location, date_time, tags):
print(f"Event created: {title}, {description}, {location}, {date_time}, {tags}")
return "Event created successfully!"
with gr.Blocks() as demo:
gr.Markdown("# AI Community Builder")
with gr.Row():
with gr.Column():
interests_input = gr.Textbox(label="Your Interests (comma-separated)", lines=2, placeholder="e.g., hiking, reading, cooking")
num_recs_input = gr.Slider(label="Number of Recommendations", minimum=1, maximum=5, value=3, step=1)
recommend_button = gr.Button("Get Recommendations")
with gr.Column():
recommendations_output = gr.Dataframe(headers=["Title", "Description"], datatype=["str", "str"], interactive=True)
recommend_button.click(fn=recommend_activities, inputs=[interests_input, num_recs_input], outputs=recommendations_output)
with gr.Accordion("Create a New Event", open=False):
with gr.Row():
title_input = gr.Textbox(label="Event Title", placeholder="Enter event title")
description_input = gr.Textbox(label="Description", lines=3, placeholder="Enter a brief description")
with gr.Row():
location_input = gr.Textbox(label="Location", placeholder="Enter location details")
datetime_input = gr.Textbox(label="Date & Time (YYYY-MM-DD HH:MM)", placeholder="Enter date and time")
tags_input = gr.Textbox(label="Tags (comma-separated)", placeholder="Enter relevant tags")
create_event_button = gr.Button("Create Event")
create_event_button.click(fn=create_event, inputs=[title_input, description_input, location_input, datetime_input, tags_input], outputs=gr.Textbox(label="Result"))
demo.launch()
@@ -1,61 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
-
|
6 |
-
# Sample Data (REPLACE WITH YOUR ACTUAL DATABASE)
|
7 |
-
data = {
|
8 |
-
'event_id': [101, 102, 103, 104, 105],
|
9 |
-
'title': ['Hiking Meetup', 'Book Club Discussion', 'Gardening Workshop', 'Coding Class', 'Yoga Session'],
|
10 |
-
'description': ['Explore local trails', 'Discuss "The Great Gatsby"', 'Learn basic gardening', 'Python programming basics', 'Relaxing yoga practice'],
|
11 |
-
'tags': ['hiking, nature, outdoors', 'books, literature, reading', 'gardening, plants, nature', 'coding, programming, python', 'yoga, fitness, relaxation']
|
12 |
-
}
|
13 |
-
events_df = pd.DataFrame(data)
|
14 |
-
|
15 |
-
def recommend_activities(interests, num_recommendations=3):
|
16 |
-
if not interests:
|
17 |
-
return "Please enter your interests."
|
18 |
-
|
19 |
-
user_interests = interests.lower()
|
20 |
-
tfidf = TfidfVectorizer()
|
21 |
-
tfidf_matrix_events = tfidf.fit_transform(events_df['tags'])
|
22 |
-
tfidf_matrix_user = tfidf.transform([user_interests])
|
23 |
-
similarities = cosine_similarity(tfidf_matrix_user, tfidf_matrix_events)
|
24 |
-
top_indices = similarities.argsort()[0][-num_recommendations:][::-1]
|
25 |
-
recommendations = events_df.iloc[top_indices][['title', 'description']].values.tolist()
|
26 |
-
return recommendations
|
27 |
-
|
28 |
-
|
29 |
-
def create_event(title, description, location, date_time, tags):
|
30 |
-
print(f"Event created: {title}, {description}, {location}, {date_time}, {tags}")
|
31 |
-
return "Event created successfully!"
|
32 |
-
|
33 |
-
|
34 |
-
with gr.Blocks() as demo:
|
35 |
-
gr.Markdown("# AI Community Builder")
|
36 |
-
|
37 |
-
with gr.Row():
|
38 |
-
with gr.Column():
|
39 |
-
interests_input = gr.Textbox(label="Your Interests (comma-separated)", lines=2, placeholder="e.g., hiking, reading, cooking")
|
40 |
-
num_recs_input = gr.Slider(label="Number of Recommendations", minimum=1, maximum=5, value=3, step=1)
|
41 |
-
recommend_button = gr.Button("Get Recommendations")
|
42 |
-
|
43 |
-
with gr.Column():
|
44 |
-
recommendations_output = gr.Dataframe(headers=["Title", "Description"], datatype=["str", "str"], interactive=True)
|
45 |
-
|
46 |
-
|
47 |
-
recommend_button.click(fn=recommend_activities, inputs=[interests_input, num_recs_input], outputs=recommendations_output)
|
48 |
-
|
49 |
-
with gr.Accordion("Create a New Event", open=False):
|
50 |
-
with gr.Row():
|
51 |
-
title_input = gr.Textbox(label="Event Title", placeholder="Enter event title")
|
52 |
-
description_input = gr.Textbox(label="Description", lines=3, placeholder="Enter a brief description")
|
53 |
-
with gr.Row():
|
54 |
-
location_input = gr.Textbox(label="Location", placeholder="Enter location details")
|
55 |
-
datetime_input = gr.Textbox(label="Date & Time (YYYY-MM-DD HH:MM)", placeholder="Enter date and time")
|
56 |
-
tags_input = gr.Textbox(label="Tags (comma-separated)", placeholder="Enter relevant tags")
|
57 |
-
create_event_button = gr.Button("Create Event")
|
58 |
-
|
59 |
-
create_event_button.click(fn=create_event, inputs=[title_input, description_input, location_input, datetime_input, tags_input], outputs=gr.Textbox(label="Result"))
|
60 |
-
|
61 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|