Spaces:
No application file
No application file
Thiwanka01
commited on
Create AI Size Advisor.py
Browse files- AI Size Advisor.py +55 -0
AI Size Advisor.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from sklearn.linear_model import LinearRegression
|
4 |
+
from sklearn.preprocessing import LabelEncoder
|
5 |
+
|
6 |
+
# Sample dataset (body measurements and corresponding size)
|
7 |
+
# You will replace this with your actual dataset
|
8 |
+
data = {
|
9 |
+
'chest': [34, 36, 38, 40, 42],
|
10 |
+
'waist': [28, 30, 32, 34, 36],
|
11 |
+
'hip': [36, 38, 40, 42, 44],
|
12 |
+
'size': ['S', 'M', 'L', 'XL', 'XXL']
|
13 |
+
}
|
14 |
+
|
15 |
+
# Train a LabelEncoder for sizes
|
16 |
+
label_encoder = LabelEncoder()
|
17 |
+
data['size_encoded'] = label_encoder.fit_transform(data['size'])
|
18 |
+
|
19 |
+
# Prepare features and target
|
20 |
+
X = np.array([data['chest'], data['waist'], data['hip']]).T
|
21 |
+
y = data['size_encoded'] # Using encoded sizes as the target
|
22 |
+
|
23 |
+
# Initialize and train the model
|
24 |
+
model = LinearRegression()
|
25 |
+
model.fit(X, y)
|
26 |
+
|
27 |
+
# Function to predict size based on measurements
|
28 |
+
def predict_size(chest, waist, hip):
|
29 |
+
input_features = np.array([[chest, waist, hip]])
|
30 |
+
predicted_size_encoded = model.predict(input_features)
|
31 |
+
|
32 |
+
# Clamp the predicted size to ensure it's within the valid range of labels
|
33 |
+
predicted_size_encoded_clamped = np.clip(predicted_size_encoded, 0, len(label_encoder.classes_) - 1)
|
34 |
+
|
35 |
+
# Convert the numeric prediction back to the original size
|
36 |
+
predicted_size = label_encoder.inverse_transform(predicted_size_encoded_clamped.astype(int))
|
37 |
+
|
38 |
+
return predicted_size[0]
|
39 |
+
|
40 |
+
# Create the Gradio interface
|
41 |
+
interface = gr.Interface(
|
42 |
+
fn=predict_size,
|
43 |
+
inputs=[
|
44 |
+
gr.Slider(minimum=30, maximum=50, step=1, label="Chest (inches)"),
|
45 |
+
gr.Slider(minimum=20, maximum=40, step=1, label="Waist (inches)"),
|
46 |
+
gr.Slider(minimum=30, maximum=50, step=1, label="Hip (inches)")
|
47 |
+
],
|
48 |
+
outputs="text",
|
49 |
+
live=True,
|
50 |
+
title="AI Size Advisor",
|
51 |
+
description="Enter your body measurements to get an accurate clothing size recommendation based on past purchase data."
|
52 |
+
)
|
53 |
+
|
54 |
+
# Launch the interface
|
55 |
+
interface.launch()
|