File size: 9,515 Bytes
7dfd834 48f6ca1 7dfd834 48f6ca1 7dfd834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import requests
import pandas as pd
from tqdm.auto import tqdm
from utils import *
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
class DeepRL_Leaderboard:
def __init__(self) -> None:
self.leaderboard= {}
def add_leaderboard(self,id=None, title=None):
if id is not None and title is not None:
id = id.strip()
title = title.strip()
self.leaderboard.update({id:{'title':title,'data':get_data_per_env(id)}})
def get_data(self):
return self.leaderboard
def get_ids(self):
return list(self.leaderboard.keys())
# CSS file for the
with open('app.css','r') as f:
BLOCK_CSS = f.read()
LOADED_MODEL_IDS = {}
LOADED_MODEL_METADATA = {}
def get_data(rl_env):
global LOADED_MODEL_IDS ,LOADED_MODEL_METADATA
data = []
model_ids = get_model_ids(rl_env)
LOADED_MODEL_IDS[rl_env]=model_ids
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
if meta is None:
continue
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
std_reward = std_reward if not pd.isna(std_reward) else 0
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
data.append(row)
return pd.DataFrame.from_records(data)
def get_data_per_env(rl_env):
dataframe = get_data(rl_env)
dataframe = dataframe.fillna("")
if not dataframe.empty:
# turn the model ids into clickable links
dataframe["User"] = dataframe["User"].apply(make_clickable_user)
dataframe["Model"] = dataframe["Model"].apply(make_clickable_model)
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
if not 'Ranking' in dataframe.columns:
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
else:
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
return table_html,dataframe,dataframe.empty
else:
html = """<div style="color: green">
<p> β Please wait. Results will be out soon... </p>
</div>
"""
return html,dataframe,dataframe.empty
rl_leaderboard = DeepRL_Leaderboard()
rl_leaderboard.add_leaderboard('CartPole-v1','The Cartpole-v1 Leaderboard')
rl_leaderboard.add_leaderboard('LunarLander-v2',"The Lunar Lander π Leaderboard")
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4-no_slippery','The FrozenLake-v1-4x4-no_slippery Leaderboard')
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8-no_slippery','The FrozenLake-v1-8x8-no_slippery Leaderboard')
rl_leaderboard.add_leaderboard('FrozenLake-v1-4x4','The FrozenLake-v1-4x4 Leaderboard')
rl_leaderboard.add_leaderboard('FrozenLake-v1-8x8','The FrozenLake-v1-8x8 Leaderboard')
rl_leaderboard.add_leaderboard('Taxi-v3','The Taxi-v3π Leaderboard')
rl_leaderboard.add_leaderboard('CarRacing-v0'," The Car Racing ποΈ Leaderboard")
rl_leaderboard.add_leaderboard('MountainCar-v0',"The Mountain Car β°οΈ π Leaderboard")
rl_leaderboard.add_leaderboard('BipedalWalker-v3',"The BipedalWalker Leaderboard")
rl_leaderboard.add_leaderboard('SpaceInvadersNoFrameskip-v4','The SpaceInvadersNoFrameskip-v4 Leaderboard')
rl_leaderboard.add_leaderboard('Pixelcopter-PLE-v0','The Pixelcopter-PLE-v0 π Leaderboard')
rl_leaderboard.add_leaderboard('Pong-PLE-v0','The Pong-PLE-v0 πΎ Leaderboard')
rl_leaderboard.add_leaderboard('Walker2DBulletEnv-v0','The Walker2DBulletEnv-v0 π€ Leaderboard')
rl_leaderboard.add_leaderboard('AntBulletEnv-v0','The AntBulletEnv-v0 πΈοΈ Leaderboard')
rl_leaderboard.add_leaderboard('HalfCheetahBulletEnv-v0','The HalfCheetahBulletEnv-v0 π€ Leaderboard')
RL_ENVS = rl_leaderboard.get_ids()
RL_DETAILS = rl_leaderboard.get_data()
def update_data(rl_env):
global LOADED_MODEL_IDS,LOADED_MODEL_METADATA
data = []
model_ids = [x for x in get_model_ids(rl_env)] #if x not in LOADED_MODEL_IDS[rl_env]] # For now let's update all
LOADED_MODEL_IDS[rl_env]+=model_ids
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
if meta is None:
continue
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
std_reward = std_reward if not pd.isna(std_reward) else 0
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
data.append(row)
return pd.DataFrame.from_records(data)
def update_data_per_env(rl_env):
global RL_DETAILS
_,old_dataframe,_ = RL_DETAILS[rl_env]['data']
new_dataframe = update_data(rl_env)
new_dataframe = new_dataframe.fillna("")
if not new_dataframe.empty:
new_dataframe["User"] = new_dataframe["User"].apply(make_clickable_user)
new_dataframe["Model"] = new_dataframe["Model"].apply(make_clickable_model)
dataframe = pd.concat([old_dataframe,new_dataframe])
if not dataframe.empty:
dataframe = dataframe.sort_values(by=['Results'], ascending=False)
if not 'Ranking' in dataframe.columns:
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
else:
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
table_html = dataframe.to_html(escape=False, index=False,justify = 'left')
return table_html,dataframe,dataframe.empty
else:
html = """<div style="color: green">
<p> β Please wait. Results will be out soon... </p>
</div>
"""
return html,dataframe,dataframe.empty
def get_info_display(dataframe,env_name,name_leaderboard,is_empty):
if not is_empty:
markdown = """
<div class='infoPoint'>
<h1 style="text-align:center"> {name_leaderboard} </h1>
<br>
<video controls width="250">
<source src="https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4"
>
</video>
</video>
<p> This is a leaderboard of <b>{len_dataframe}</b> agents, from <b>{num_unique_users}</b> unique users, playing {env_name} π©βπ. </p>
<br>
<p> We use <b>lower bound result to sort the models: mean_reward - std_reward.</b> </p>
<br>
<p> You can click on the model's name to be redirected to its model card which includes documentation. </p>
<br>
<p> You want to try to train your agents? <a href="http://eepurl.com/h1pElX" target="_blank">Sign up to the Hugging Face free Deep Reinforcement Learning Class π€ </a>.
</p>
<br>
<p> You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo π </a>.
</p>
</div>
""".format(len_dataframe = len(dataframe),env_name = env_name,name_leaderboard = name_leaderboard,num_unique_users = len(set(dataframe['User'].values)))
else:
markdown = """
<div class='infoPoint'>
<h1> {name_leaderboard} </h1>
<br>
</div>
""".format(name_leaderboard = name_leaderboard)
return markdown
def reload_all_data():
global RL_DETAILS,RL_ENVS
for rl_env in RL_ENVS:
RL_DETAILS[rl_env]['data'] = update_data_per_env(rl_env)
html = """<div style="color: green">
<p> β
Leaderboard updated! </p>
</div>
"""
return html
def reload_leaderboard(rl_env):
global RL_DETAILS
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
return markdown,data_html
block = gr.Blocks(css=BLOCK_CSS)
with block:
notification = gr.HTML("""<div style="color: green">
<p> β Updating leaderboard... </p>
</div>
""")
block.load(reload_all_data,[],[notification])
with gr.Tabs():
for rl_env in RL_ENVS:
with gr.TabItem(rl_env) as rl_tab:
data_html,data_dataframe,is_empty = RL_DETAILS[rl_env]['data']
markdown = get_info_display(data_dataframe,rl_env,RL_DETAILS[rl_env]['title'],is_empty)
env_state =gr.Variable(value=f'\"{rl_env}\"')
output_markdown = gr.HTML(markdown)
output_html = gr.HTML(data_html)
rl_tab.select(reload_leaderboard,inputs=[env_state],outputs=[output_markdown,output_html])
block.launch()
|