Spaces:
Running
on
A100
Running
on
A100
File size: 4,830 Bytes
ad06aed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import torch.nn.functional as F
import nvdiffrast.torch as dr
from . import Renderer
_FG_LUT = None
def interpolate(attr, rast, attr_idx, rast_db=None):
return dr.interpolate(
attr.contiguous(), rast, attr_idx, rast_db=rast_db,
diff_attrs=None if rast_db is None else 'all')
def xfm_points(points, matrix, use_python=True):
'''Transform points.
Args:
points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3]
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4]
use_python: Use PyTorch's torch.matmul (for validation)
Returns:
Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4].
'''
out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2))
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN"
return out
def dot(x, y):
return torch.sum(x * y, -1, keepdim=True)
def compute_vertex_normal(v_pos, t_pos_idx):
i0 = t_pos_idx[:, 0]
i1 = t_pos_idx[:, 1]
i2 = t_pos_idx[:, 2]
v0 = v_pos[i0, :]
v1 = v_pos[i1, :]
v2 = v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
)
v_nrm = F.normalize(v_nrm, dim=1)
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
class NeuralRender(Renderer):
def __init__(self, device='cuda', camera_model=None):
super(NeuralRender, self).__init__()
self.device = device
self.ctx = dr.RasterizeCudaContext(device=device)
self.projection_mtx = None
self.camera = camera_model
def render_mesh(
self,
mesh_v_pos_bxnx3,
mesh_t_pos_idx_fx3,
camera_mv_bx4x4,
mesh_v_feat_bxnxd,
resolution=256,
spp=1,
device='cuda',
hierarchical_mask=False
):
assert not hierarchical_mask
mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4
v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates
v_pos_clip = self.camera.project(v_pos) # Projection in the camera
v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates
# Render the image,
# Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render
num_layers = 1
mask_pyramid = None
assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes
mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler:
for _ in range(num_layers):
rast, db = peeler.rasterize_next_layer()
gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3)
hard_mask = torch.clamp(rast[..., -1:], 0, 1)
antialias_mask = dr.antialias(
hard_mask.clone().contiguous(), rast, v_pos_clip,
mesh_t_pos_idx_fx3)
depth = gb_feat[..., -2:-1]
ori_mesh_feature = gb_feat[..., :-4]
normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3)
normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3)
normal = F.normalize(normal, dim=-1)
normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background
return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal
|