Spaces:
Running
on
A100
Running
on
A100
# Copyright (c) 2023, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch.nn as nn | |
from transformers import ViTImageProcessor | |
from einops import rearrange, repeat | |
from .dino import ViTModel | |
class DinoWrapper(nn.Module): | |
""" | |
Dino v1 wrapper using huggingface transformer implementation. | |
""" | |
def __init__(self, model_name: str, freeze: bool = True): | |
super().__init__() | |
self.model, self.processor = self._build_dino(model_name) | |
self.camera_embedder = nn.Sequential( | |
nn.Linear(16, self.model.config.hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(self.model.config.hidden_size, self.model.config.hidden_size, bias=True) | |
) | |
if freeze: | |
self._freeze() | |
def forward(self, image, camera): | |
# image: [B, N, C, H, W] | |
# camera: [B, N, D] | |
# RGB image with [0,1] scale and properly sized | |
if image.ndim == 5: | |
image = rearrange(image, 'b n c h w -> (b n) c h w') | |
dtype = image.dtype | |
inputs = self.processor( | |
images=image.float(), | |
return_tensors="pt", | |
do_rescale=False, | |
do_resize=False, | |
).to(self.model.device).to(dtype) | |
# embed camera | |
N = camera.shape[1] | |
camera_embeddings = self.camera_embedder(camera) | |
camera_embeddings = rearrange(camera_embeddings, 'b n d -> (b n) d') | |
embeddings = camera_embeddings | |
# This resampling of positional embedding uses bicubic interpolation | |
outputs = self.model(**inputs, adaln_input=embeddings, interpolate_pos_encoding=True) | |
last_hidden_states = outputs.last_hidden_state | |
return last_hidden_states | |
def _freeze(self): | |
print(f"======== Freezing DinoWrapper ========") | |
self.model.eval() | |
for name, param in self.model.named_parameters(): | |
param.requires_grad = False | |
def _build_dino(model_name: str, proxy_error_retries: int = 3, proxy_error_cooldown: int = 5): | |
import requests | |
try: | |
model = ViTModel.from_pretrained(model_name, add_pooling_layer=False) | |
processor = ViTImageProcessor.from_pretrained(model_name) | |
return model, processor | |
except requests.exceptions.ProxyError as err: | |
if proxy_error_retries > 0: | |
print(f"Huggingface ProxyError: Retrying in {proxy_error_cooldown} seconds...") | |
import time | |
time.sleep(proxy_error_cooldown) | |
return DinoWrapper._build_dino(model_name, proxy_error_retries - 1, proxy_error_cooldown) | |
else: | |
raise err | |