File size: 4,642 Bytes
881fc76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d4ba5
881fc76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33400d1
 
881fc76
 
33400d1
 
881fc76
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
import numpy as np
import spaces
import torch
import rembg
from PIL import Image
from functools import partial

import logging
import os
import shlex
import subprocess
import tempfile
import time

subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))

from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation


STEP1_HEADER = """
# Step 1: Generate the 3D Mesh

For this step, we use TripoSR, an open-source model for **fast** feedforward 3D reconstruction from a single image, developed in collaboration between [Tripo AI](https://www.tripo3d.ai/) and [Stability AI](https://stability.ai/).

During this step, you need to upload an image of what you want to generate a 3D Model from.


## πŸ’‘ Tips

-  If there's a background, βœ… Remove background.

- If you find the result is unsatisfied, please try to change the foreground ratio. It might improve the results.


"""

# These part of the code (check_input_image and preprocess were taken from https://huggingface.co/spaces/stabilityai/TripoSR/blob/main/app.py)
if torch.cuda.is_available():
    device = "cuda:0"
else:
    device = "cpu"

model = TSR.from_pretrained(
    "stabilityai/TripoSR",
    config_name="config.yaml",
    weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)

rembg_session = rembg.new_session()


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background, foreground_ratio):
    def fill_background(image):
        image = np.array(image).astype(np.float32) / 255.0
        image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
        image = Image.fromarray((image * 255.0).astype(np.uint8))
        return image

    if do_remove_background:
        image = input_image.convert("RGB")
        image = remove_background(image, rembg_session)
        image = resize_foreground(image, foreground_ratio)
        image = fill_background(image)
    else:
        image = input_image
        if image.mode == "RGBA":
            image = fill_background(image)
    return image


@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
    scene_codes = model(image, device=device)
    mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
    mesh = to_gradio_3d_orientation(mesh)

    mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
    mesh.export(mesh_path_glb.name)

    mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
    mesh.apply_scale([-1, 1, 1])  # Otherwise the visualized .obj will be flipped
    mesh.export(mesh_path_obj.name)
    
    return mesh_path_obj.name, mesh_path_glb.name


with gr.Blocks() as demo:
	gr.Markdown(STEP1_HEADER)
	with gr.Row(variant = "panel"):
		with gr.Column():
			with gr.Row():
				input_image = gr.Image(
					label = "Input Image",
					image_mode = "RGBA",
					sources = "upload",
					type="pil",
					elem_id="content_image")
				processed_image = gr.Image(label="Processed Image", interactive=False)
			with gr.Row():
				with gr.Group():
					do_remove_background = gr.Checkbox(
						label="Remove Background",
						value=True)
					foreground_ratio = gr.Slider(
						label="Foreground Ratio",
						minimum=0.5,
						maximum=1.0,
						value=0.85,
						step=0.05,
						)
					mc_resolution = gr.Slider(
						label="Marching Cubes Resolution",
						minimum=32,
						maximum=320,
						value=256,
						step=32
						)
			with gr.Row():
				step1_submit = gr.Button("Generate", elem_id="generate", variant="primary")

		with gr.Column():
			with gr.Tab("OBJ"):
				output_model_obj = gr.Model3D(
					label = "Output Model (OBJ Format)",
					interative = False,
				)
				gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
			with gr.Tab("GLB"):
				output_model_glb = gr.Model3D(
                    label="Output Model (GLB Format)",
                    interactive=False,
				)
				gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")

	step1_submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background, foreground_ratio],
        outputs=[processed_image],
    ).success(
        fn=generate,
        inputs=[processed_image, mc_resolution],
        outputs=[output_model_obj, output_model_glb],
    )

demo.queue(max_size=10)
demo.launch()