File size: 15,576 Bytes
02bb056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import importlib
import math
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import imageio
import numpy as np
import PIL.Image
import rembg
import torch
import torch.nn as nn
import torch.nn.functional as F
import trimesh
from omegaconf import DictConfig, OmegaConf
from PIL import Image


def parse_structured(fields: Any, cfg: Optional[Union[dict, DictConfig]] = None) -> Any:
    scfg = OmegaConf.merge(OmegaConf.structured(fields), cfg)
    return scfg


def find_class(cls_string):
    module_string = ".".join(cls_string.split(".")[:-1])
    cls_name = cls_string.split(".")[-1]
    module = importlib.import_module(module_string, package=None)
    cls = getattr(module, cls_name)
    return cls


def get_intrinsic_from_fov(fov, H, W, bs=-1):
    focal_length = 0.5 * H / np.tan(0.5 * fov)
    intrinsic = np.identity(3, dtype=np.float32)
    intrinsic[0, 0] = focal_length
    intrinsic[1, 1] = focal_length
    intrinsic[0, 2] = W / 2.0
    intrinsic[1, 2] = H / 2.0

    if bs > 0:
        intrinsic = intrinsic[None].repeat(bs, axis=0)

    return torch.from_numpy(intrinsic)


class BaseModule(nn.Module):
    @dataclass
    class Config:
        pass

    cfg: Config  # add this to every subclass of BaseModule to enable static type checking

    def __init__(
        self, cfg: Optional[Union[dict, DictConfig]] = None, *args, **kwargs
    ) -> None:
        super().__init__()
        self.cfg = parse_structured(self.Config, cfg)
        self.configure(*args, **kwargs)

    def configure(self, *args, **kwargs) -> None:
        raise NotImplementedError


class ImagePreprocessor:
    def convert_and_resize(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        size: int,
    ):
        if isinstance(image, PIL.Image.Image):
            image = torch.from_numpy(np.array(image).astype(np.float32) / 255.0)
        elif isinstance(image, np.ndarray):
            if image.dtype == np.uint8:
                image = torch.from_numpy(image.astype(np.float32) / 255.0)
            else:
                image = torch.from_numpy(image)
        elif isinstance(image, torch.Tensor):
            pass

        batched = image.ndim == 4

        if not batched:
            image = image[None, ...]
        image = F.interpolate(
            image.permute(0, 3, 1, 2),
            (size, size),
            mode="bilinear",
            align_corners=False,
            antialias=True,
        ).permute(0, 2, 3, 1)
        if not batched:
            image = image[0]
        return image

    def __call__(
        self,
        image: Union[
            PIL.Image.Image,
            np.ndarray,
            torch.FloatTensor,
            List[PIL.Image.Image],
            List[np.ndarray],
            List[torch.FloatTensor],
        ],
        size: int,
    ) -> Any:
        if isinstance(image, (np.ndarray, torch.FloatTensor)) and image.ndim == 4:
            image = self.convert_and_resize(image, size)
        else:
            if not isinstance(image, list):
                image = [image]
            image = [self.convert_and_resize(im, size) for im in image]
            image = torch.stack(image, dim=0)
        return image


def rays_intersect_bbox(
    rays_o: torch.Tensor,
    rays_d: torch.Tensor,
    radius: float,
    near: float = 0.0,
    valid_thresh: float = 0.01,
):
    input_shape = rays_o.shape[:-1]
    rays_o, rays_d = rays_o.view(-1, 3), rays_d.view(-1, 3)
    rays_d_valid = torch.where(
        rays_d.abs() < 1e-6, torch.full_like(rays_d, 1e-6), rays_d
    )
    if type(radius) in [int, float]:
        radius = torch.FloatTensor(
            [[-radius, radius], [-radius, radius], [-radius, radius]]
        ).to(rays_o.device)
    radius = (
        1.0 - 1.0e-3
    ) * radius  # tighten the radius to make sure the intersection point lies in the bounding box
    interx0 = (radius[..., 1] - rays_o) / rays_d_valid
    interx1 = (radius[..., 0] - rays_o) / rays_d_valid
    t_near = torch.minimum(interx0, interx1).amax(dim=-1).clamp_min(near)
    t_far = torch.maximum(interx0, interx1).amin(dim=-1)

    # check wheter a ray intersects the bbox or not
    rays_valid = t_far - t_near > valid_thresh

    t_near[torch.where(~rays_valid)] = 0.0
    t_far[torch.where(~rays_valid)] = 0.0

    t_near = t_near.view(*input_shape, 1)
    t_far = t_far.view(*input_shape, 1)
    rays_valid = rays_valid.view(*input_shape)

    return t_near, t_far, rays_valid


def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any:
    if chunk_size <= 0:
        return func(*args, **kwargs)
    B = None
    for arg in list(args) + list(kwargs.values()):
        if isinstance(arg, torch.Tensor):
            B = arg.shape[0]
            break
    assert (
        B is not None
    ), "No tensor found in args or kwargs, cannot determine batch size."
    out = defaultdict(list)
    out_type = None
    # max(1, B) to support B == 0
    for i in range(0, max(1, B), chunk_size):
        out_chunk = func(
            *[
                arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                for arg in args
            ],
            **{
                k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg
                for k, arg in kwargs.items()
            },
        )
        if out_chunk is None:
            continue
        out_type = type(out_chunk)
        if isinstance(out_chunk, torch.Tensor):
            out_chunk = {0: out_chunk}
        elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list):
            chunk_length = len(out_chunk)
            out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)}
        elif isinstance(out_chunk, dict):
            pass
        else:
            print(
                f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}."
            )
            exit(1)
        for k, v in out_chunk.items():
            v = v if torch.is_grad_enabled() else v.detach()
            out[k].append(v)

    if out_type is None:
        return None

    out_merged: Dict[Any, Optional[torch.Tensor]] = {}
    for k, v in out.items():
        if all([vv is None for vv in v]):
            # allow None in return value
            out_merged[k] = None
        elif all([isinstance(vv, torch.Tensor) for vv in v]):
            out_merged[k] = torch.cat(v, dim=0)
        else:
            raise TypeError(
                f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}"
            )

    if out_type is torch.Tensor:
        return out_merged[0]
    elif out_type in [tuple, list]:
        return out_type([out_merged[i] for i in range(chunk_length)])
    elif out_type is dict:
        return out_merged


ValidScale = Union[Tuple[float, float], torch.FloatTensor]


def scale_tensor(dat: torch.FloatTensor, inp_scale: ValidScale, tgt_scale: ValidScale):
    if inp_scale is None:
        inp_scale = (0, 1)
    if tgt_scale is None:
        tgt_scale = (0, 1)
    if isinstance(tgt_scale, torch.FloatTensor):
        assert dat.shape[-1] == tgt_scale.shape[-1]
    dat = (dat - inp_scale[0]) / (inp_scale[1] - inp_scale[0])
    dat = dat * (tgt_scale[1] - tgt_scale[0]) + tgt_scale[0]
    return dat


def get_activation(name) -> Callable:
    if name is None:
        return lambda x: x
    name = name.lower()
    if name == "none":
        return lambda x: x
    elif name == "exp":
        return lambda x: torch.exp(x)
    elif name == "sigmoid":
        return lambda x: torch.sigmoid(x)
    elif name == "tanh":
        return lambda x: torch.tanh(x)
    elif name == "softplus":
        return lambda x: F.softplus(x)
    else:
        try:
            return getattr(F, name)
        except AttributeError:
            raise ValueError(f"Unknown activation function: {name}")


def get_ray_directions(
    H: int,
    W: int,
    focal: Union[float, Tuple[float, float]],
    principal: Optional[Tuple[float, float]] = None,
    use_pixel_centers: bool = True,
    normalize: bool = True,
) -> torch.FloatTensor:
    """
    Get ray directions for all pixels in camera coordinate.
    Reference: https://www.scratchapixel.com/lessons/3d-basic-rendering/
               ray-tracing-generating-camera-rays/standard-coordinate-systems

    Inputs:
        H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers
    Outputs:
        directions: (H, W, 3), the direction of the rays in camera coordinate
    """
    pixel_center = 0.5 if use_pixel_centers else 0

    if isinstance(focal, float):
        fx, fy = focal, focal
        cx, cy = W / 2, H / 2
    else:
        fx, fy = focal
        assert principal is not None
        cx, cy = principal

    i, j = torch.meshgrid(
        torch.arange(W, dtype=torch.float32) + pixel_center,
        torch.arange(H, dtype=torch.float32) + pixel_center,
        indexing="xy",
    )

    directions = torch.stack([(i - cx) / fx, -(j - cy) / fy, -torch.ones_like(i)], -1)

    if normalize:
        directions = F.normalize(directions, dim=-1)

    return directions


def get_rays(
    directions,
    c2w,
    keepdim=False,
    noise_scale=0.0,
    normalize=False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
    # Rotate ray directions from camera coordinate to the world coordinate
    assert directions.shape[-1] == 3

    if directions.ndim == 2:  # (N_rays, 3)
        if c2w.ndim == 2:  # (4, 4)
            c2w = c2w[None, :, :]
        assert c2w.ndim == 3  # (N_rays, 4, 4) or (1, 4, 4)
        rays_d = (directions[:, None, :] * c2w[:, :3, :3]).sum(-1)  # (N_rays, 3)
        rays_o = c2w[:, :3, 3].expand(rays_d.shape)
    elif directions.ndim == 3:  # (H, W, 3)
        assert c2w.ndim in [2, 3]
        if c2w.ndim == 2:  # (4, 4)
            rays_d = (directions[:, :, None, :] * c2w[None, None, :3, :3]).sum(
                -1
            )  # (H, W, 3)
            rays_o = c2w[None, None, :3, 3].expand(rays_d.shape)
        elif c2w.ndim == 3:  # (B, 4, 4)
            rays_d = (directions[None, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
                -1
            )  # (B, H, W, 3)
            rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)
    elif directions.ndim == 4:  # (B, H, W, 3)
        assert c2w.ndim == 3  # (B, 4, 4)
        rays_d = (directions[:, :, :, None, :] * c2w[:, None, None, :3, :3]).sum(
            -1
        )  # (B, H, W, 3)
        rays_o = c2w[:, None, None, :3, 3].expand(rays_d.shape)

    # add camera noise to avoid grid-like artifect
    # https://github.com/ashawkey/stable-dreamfusion/blob/49c3d4fa01d68a4f027755acf94e1ff6020458cc/nerf/utils.py#L373
    if noise_scale > 0:
        rays_o = rays_o + torch.randn(3, device=rays_o.device) * noise_scale
        rays_d = rays_d + torch.randn(3, device=rays_d.device) * noise_scale

    if normalize:
        rays_d = F.normalize(rays_d, dim=-1)
    if not keepdim:
        rays_o, rays_d = rays_o.reshape(-1, 3), rays_d.reshape(-1, 3)

    return rays_o, rays_d


def get_spherical_cameras(
    n_views: int,
    elevation_deg: float,
    camera_distance: float,
    fovy_deg: float,
    height: int,
    width: int,
):
    azimuth_deg = torch.linspace(0, 360.0, n_views + 1)[:n_views]
    elevation_deg = torch.full_like(azimuth_deg, elevation_deg)
    camera_distances = torch.full_like(elevation_deg, camera_distance)

    elevation = elevation_deg * math.pi / 180
    azimuth = azimuth_deg * math.pi / 180

    # convert spherical coordinates to cartesian coordinates
    # right hand coordinate system, x back, y right, z up
    # elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
    camera_positions = torch.stack(
        [
            camera_distances * torch.cos(elevation) * torch.cos(azimuth),
            camera_distances * torch.cos(elevation) * torch.sin(azimuth),
            camera_distances * torch.sin(elevation),
        ],
        dim=-1,
    )

    # default scene center at origin
    center = torch.zeros_like(camera_positions)
    # default camera up direction as +z
    up = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None, :].repeat(n_views, 1)

    fovy = torch.full_like(elevation_deg, fovy_deg) * math.pi / 180

    lookat = F.normalize(center - camera_positions, dim=-1)
    right = F.normalize(torch.cross(lookat, up), dim=-1)
    up = F.normalize(torch.cross(right, lookat), dim=-1)
    c2w3x4 = torch.cat(
        [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
        dim=-1,
    )
    c2w = torch.cat([c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1)
    c2w[:, 3, 3] = 1.0

    # get directions by dividing directions_unit_focal by focal length
    focal_length = 0.5 * height / torch.tan(0.5 * fovy)
    directions_unit_focal = get_ray_directions(
        H=height,
        W=width,
        focal=1.0,
    )
    directions = directions_unit_focal[None, :, :, :].repeat(n_views, 1, 1, 1)
    directions[:, :, :, :2] = (
        directions[:, :, :, :2] / focal_length[:, None, None, None]
    )
    # must use normalize=True to normalize directions here
    rays_o, rays_d = get_rays(directions, c2w, keepdim=True, normalize=True)

    return rays_o, rays_d


def remove_background(
    image: PIL.Image.Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image


def resize_foreground(
    image: PIL.Image.Image,
    ratio: float,
) -> PIL.Image.Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = PIL.Image.fromarray(new_image)
    return new_image


def save_video(
    frames: List[PIL.Image.Image],
    output_path: str,
    fps: int = 30,
):
    # use imageio to save video
    frames = [np.array(frame) for frame in frames]
    writer = imageio.get_writer(output_path, fps=fps)
    for frame in frames:
        writer.append_data(frame)
    writer.close()


def to_gradio_3d_orientation(mesh):
    mesh.apply_transform(trimesh.transformations.rotation_matrix(-np.pi/2, [1, 0, 0]))
    # mesh.apply_scale([1, 1, -1])
    mesh.apply_transform(trimesh.transformations.rotation_matrix(np.pi/2, [0, 1, 0]))
    return mesh