Spaces:
Runtime error
Runtime error
import os | |
import imageio | |
import numpy as np | |
import torch | |
import rembg | |
from PIL import Image | |
from torchvision.transforms import v2 | |
from pytorch_lightning import seed_everything | |
from omegaconf import OmegaConf | |
from einops import rearrange, repeat | |
from tqdm import tqdm | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
from src.utils.train_util import instantiate_from_config | |
from src.utils.camera_util import ( | |
FOV_to_intrinsics, | |
get_zero123plus_input_cameras, | |
get_circular_camera_poses, | |
) | |
from src.utils.mesh_util import save_obj, save_glb | |
from src.utils.infer_util import remove_background, resize_foreground, images_to_video | |
import tempfile | |
from functools import partial | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import shutil | |
import spaces | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
""" | |
Get the rendering camera parameters. | |
""" | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
import shutil | |
def find_cuda(): | |
# Check if CUDA_HOME or CUDA_PATH environment variables are set | |
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
if cuda_home and os.path.exists(cuda_home): | |
return cuda_home | |
# Search for the nvcc executable in the system's PATH | |
nvcc_path = shutil.which('nvcc') | |
if nvcc_path: | |
# Remove the 'bin/nvcc' part to get the CUDA installation path | |
cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
return cuda_path | |
return None | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
return input_image | |
def generate_mvs(input_image, sample_steps, sample_seed): | |
seed_everything(sample_seed) | |
# sampling | |
z123_image = pipeline( | |
input_image, | |
num_inference_steps=sample_steps | |
).images[0] | |
show_image = np.asarray(z123_image, dtype=np.uint8) | |
show_image = torch.from_numpy(show_image) # (960, 640, 3) | |
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) | |
show_image = Image.fromarray(show_image.numpy()) | |
return z123_image, show_image | |
def make3d(images): | |
global model | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, use_renderer=False) | |
model = model.eval() | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) | |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) | |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
print(mesh_fpath) | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") | |
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
# get triplane | |
planes = model.forward_planes(images, input_cameras) | |
# # get video | |
# chunk_size = 20 if IS_FLEXICUBES else 1 | |
# render_size = 384 | |
# frames = [] | |
# for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): | |
# if IS_FLEXICUBES: | |
# frame = model.forward_geometry( | |
# planes, | |
# render_cameras[:, i:i+chunk_size], | |
# render_size=render_size, | |
# )['img'] | |
# else: | |
# frame = model.synthesizer( | |
# planes, | |
# cameras=render_cameras[:, i:i+chunk_size], | |
# render_size=render_size, | |
# )['images_rgb'] | |
# frames.append(frame) | |
# frames = torch.cat(frames, dim=1) | |
# images_to_video( | |
# frames[0], | |
# video_fpath, | |
# fps=30, | |
# ) | |
# print(f"Video saved to {video_fpath}") | |
# get mesh | |
mesh_out = model.extract_mesh( | |
planes, | |
use_texture_map=False, | |
**infer_config, | |
) | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
print(f"Mesh saved to {mesh_fpath}") | |
return mesh_fpath, mesh_glb_fpath | |