import spaces import gradio as gr import numpy as np import torch import rembg from PIL import Image from functools import partial import logging import os import shlex import subprocess import tempfile import time from PIL import Image from torchvision.transforms import v2 from pytorch_lightning import seed_everything from omegaconf import OmegaConf from einops import rearrange, repeat from tqdm import tqdm from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler import os import imageio import numpy as np import torch import rembg from PIL import Image from torchvision.transforms import v2 from pytorch_lightning import seed_everything from omegaconf import OmegaConf from einops import rearrange, repeat from tqdm import tqdm from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler import tempfile from functools import partial from huggingface_hub import hf_hub_download from instantmesh.utils import get_render_cameras, find_cuda, check_input_image, generate_mvs, make3d from instantmesh.src.utils.train_util import instantiate_from_config # This was the code needed for TripoSR """ subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl')) from tsr.system import TSR from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation """ HEADER = """ # Generate 3D Assets for Roblox With this Space, you can generate 3D Assets using AI for your Roblox game for free. Simply follow the 4 steps below. 1. Generate a 3D Mesh using an image model as input. 2. Simplify the Mesh to get lower polygon number 3. (Optional) make the Mesh more smooth 4. Get the Material We wrote a tutorial here """ STEP1_HEADER = """ ## Step 1: Generate the 3D Mesh For this step, we use InstantMesh, an open-source model for **fast** feedforward 3D mesh generation from a single image. During this step, you need to upload an image of what you want to generate a 3D Model from. ## 💡 Tips - If there's a background, ✅ Remove background. - The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42). """ STEP2_HEADER = """ ## Step 2: Simplify the generated 3D Mesh ADD ILLUSTRATION The 3D Mesh Generated contains too much polygons, fortunately, we can use another AI model to help us optimize it. The model we use is called [MeshAnythingV2](). ## 💡 Tips - We don't click on Preprocess with marching Cubes, because in the last step the input mesh was produced by it. - Limited by computational resources, MeshAnything is trained on meshes with fewer than 1600 faces and cannot generate meshes with more than 1600 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 1600 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality. """ STEP3_HEADER = """ ## Step 3 (optional): Shader Smooth - The mesh simplified in step 2, looks low poly. One way to make it more smooth is to use Shader Smooth. - You can usually do it in Blender, but we can do it directly here ADD ILLUSTRATION ADD SHADERSMOOTH """ STEP4_HEADER = """ ## Step 4: Get the Mesh Material """ ############################################################################### # Configuration for InstantMesh # All this code is from https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/app.py ############################################################################### cuda_path = find_cuda() if cuda_path: print(f"CUDA installation found at: {cuda_path}") else: print("CUDA installation not found") config_path = 'instantmesh/configs/instant-mesh-large.yaml' config = OmegaConf.load(config_path) config_name = os.path.basename(config_path).replace('.yaml', '') model_config = config.model_config infer_config = config.infer_config IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False device = torch.device('cuda') # load diffusion model print('Loading diffusion model ...') pipeline = DiffusionPipeline.from_pretrained( "sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus", torch_dtype=torch.float16, ) pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing='trailing' ) # load custom white-background UNet unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") state_dict = torch.load(unet_ckpt_path, map_location='cpu') pipeline.unet.load_state_dict(state_dict, strict=True) pipeline = pipeline.to(device) # load reconstruction model print('Loading reconstruction model ...') model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") model = instantiate_from_config(model_config) state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} model.load_state_dict(state_dict, strict=True) model = model.to(device) print('Loading Finished!') with gr.Blocks() as demo: gr.Markdown(HEADER) gr.Markdown(STEP1_HEADER) with gr.Row(variant = "panel"): with gr.Column(): with gr.Row(): input_image = gr.Image( label = "Input Image", image_mode = "RGBA", sources = "upload", type="pil", elem_id="content_image" ) processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="pil", interactive=False ) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Remove Background", value=True) sample_seed = gr.Number( value=42, label="Seed Value", precision=0 ) sample_steps = gr.Slider( label="Sample Steps", minimum=30, maximum=75, value=75, step=5 ) with gr.Row(): step1_submit = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Column(): with gr.Row(): with gr.Column(): mv_show_images = gr.Image( label="Generated Multi-views", type="pil", width=379, interactive=False ) with gr.Column(): with gr.Tab("OBJ"): output_model_obj = gr.Model3D( label = "Output Model (OBJ Format)", interactive = False, ) gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.") with gr.Tab("GLB"): output_model_glb = gr.Model3D( label="Output Model (GLB Format)", interactive=False, ) gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") with gr.Row(): gr.Markdown('''Try a different seed value if the result is unsatisfying (Default: 42).''') mv_images = gr.State() step1_submit.click(fn=check_input_image, inputs=[input_image]).success( fn=preprocess, inputs=[input_image, do_remove_background], outputs=[processed_image], ).success( fn=generate_mvs, inputs=[processed_image, sample_steps, sample_seed], outputs=[mv_images, mv_show_images], ).success( fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb] ) gr.Markdown(STEP2_HEADER) gr.Markdown(STEP3_HEADER) gr.Markdown(STEP4_HEADER) demo.queue(max_size=10) demo.launch()