File size: 22,078 Bytes
d0d35cc
e4adf40
4927106
 
 
 
 
 
 
74465a1
3044d56
 
74465a1
 
 
 
 
 
 
 
 
 
 
 
dbbb9d0
 
74465a1
 
26fc4a2
74465a1
 
26fc4a2
0afca08
74465a1
 
 
 
 
 
 
 
 
3044d56
 
 
 
 
 
 
74465a1
dbbb9d0
 
 
26fc4a2
 
 
74465a1
 
 
 
 
 
 
 
 
26fc4a2
 
 
74465a1
 
26fc4a2
74465a1
 
26fc4a2
74465a1
 
 
 
26fc4a2
 
 
 
 
 
 
 
 
 
 
74465a1
26fc4a2
 
74465a1
26fc4a2
0cd8dc5
26fc4a2
0cd8dc5
 
 
 
 
26fc4a2
0cd8dc5
 
 
 
 
 
26fc4a2
0cd8dc5
 
26fc4a2
 
 
 
 
 
0cd8dc5
26fc4a2
 
 
 
 
74465a1
26fc4a2
74465a1
26fc4a2
74465a1
 
26fc4a2
74465a1
26fc4a2
74465a1
 
26fc4a2
74465a1
26fc4a2
 
74465a1
 
26fc4a2
 
 
 
 
 
74465a1
 
 
 
 
26fc4a2
 
 
 
 
 
74465a1
26fc4a2
 
 
 
 
 
74465a1
 
 
 
26fc4a2
74465a1
 
 
 
 
 
 
26fc4a2
 
 
74465a1
26fc4a2
 
 
74465a1
26fc4a2
74465a1
 
26fc4a2
 
74465a1
26fc4a2
74465a1
 
26fc4a2
74465a1
 
26fc4a2
 
 
74465a1
 
 
 
 
26fc4a2
 
ac99742
26fc4a2
 
 
 
3b4754e
26fc4a2
 
 
 
 
 
 
74465a1
9538ed4
26fc4a2
 
 
74465a1
 
26fc4a2
 
 
74465a1
 
 
26fc4a2
74465a1
 
0afca08
74465a1
 
 
 
26fc4a2
35f429b
 
 
 
 
26fc4a2
35f429b
 
3539c9b
26fc4a2
0afca08
e18e089
26fc4a2
35f429b
74465a1
26fc4a2
74465a1
 
3044d56
 
 
 
26fc4a2
3044d56
 
26fc4a2
3044d56
 
 
 
26fc4a2
3044d56
26fc4a2
3044d56
 
 
 
 
 
 
 
 
 
26fc4a2
3044d56
 
 
 
 
 
 
26fc4a2
 
 
 
 
 
 
 
3044d56
 
 
 
 
 
 
 
 
 
 
26fc4a2
3044d56
 
 
 
 
 
 
 
 
 
 
 
 
26fc4a2
3044d56
 
 
 
 
 
 
 
 
 
 
 
 
 
26fc4a2
 
 
 
 
 
 
 
 
 
3044d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26fc4a2
 
 
 
3044d56
 
26fc4a2
 
 
 
 
 
 
 
3044d56
26fc4a2
3044d56
26fc4a2
 
 
3044d56
 
 
 
 
 
 
 
26fc4a2
 
3044d56
26fc4a2
3044d56
 
 
 
 
26fc4a2
 
 
3044d56
 
 
 
 
 
 
 
 
 
26fc4a2
 
 
3044d56
 
26fc4a2
 
 
3044d56
26fc4a2
3044d56
26fc4a2
 
3044d56
26fc4a2
3044d56
 
 
 
 
3300d6a
26fc4a2
3300d6a
 
 
 
 
26fc4a2
3300d6a
 
 
 
26fc4a2
3300d6a
 
26fc4a2
3300d6a
 
26fc4a2
3300d6a
dbbb9d0
 
 
 
 
 
4574bb0
dbbb9d0
4574bb0
 
 
dbbb9d0
 
bd14a5a
dbbb9d0
 
 
 
 
 
bd14a5a
dbbb9d0
bd14a5a
dbbb9d0
 
 
 
 
 
 
 
 
bd14a5a
dbbb9d0
 
 
 
 
 
74465a1
 
dbbb9d0
 
 
74465a1
 
ef24b41
 
26fc4a2
ef24b41
 
 
26fc4a2
 
 
ef24b41
26fc4a2
 
 
 
ef24b41
 
26fc4a2
 
 
 
 
 
 
 
 
 
74465a1
26fc4a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import spaces
import subprocess
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

import os
import time

import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler

# Imports for InstantMesh
import shutil
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
    FOV_to_intrinsics,
    get_zero123plus_input_cameras,
    get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video

import tempfile
from functools import partial

from huggingface_hub import hf_hub_download

import gradio as gr

# Imports for MeshAnythingv2
from accelerate.utils import set_seed
from accelerate import Accelerator
from main import load_v2
from mesh_to_pc import process_mesh_to_pc
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection

###############################################################################
# Configuration for InstantMesh
###############################################################################
def get_render_cameras(
    batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False
):
    """
    Get the rendering camera parameters.
    """
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = (
            FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        )
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras


def images_to_video(images, output_path, fps=30):
    # images: (N, C, H, W)
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    frames = []
    for i in range(images.shape[0]):
        frame = (
            (images[i].permute(1, 2, 0).cpu().numpy() * 255)
            .astype(np.uint8)
            .clip(0, 255)
        )
        assert (
            frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3]
        ), f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert (
            frame.min() >= 0 and frame.max() <= 255
        ), f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec="h264")


def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get("CUDA_HOME") or os.environ.get("CUDA_PATH")

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which("nvcc")

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None


cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")

config_path = "configs/instant-mesh-large.yaml"
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace(".yaml", "")
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = True if config_name.startswith("instant-mesh") else False

device = torch.device("cuda")

# load diffusion model
print("Loading diffusion model ...")
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2",
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing="trailing"
)

# load custom white-background UNet
unet_ckpt_path = hf_hub_download(
    repo_id="TencentARC/InstantMesh",
    filename="diffusion_pytorch_model.bin",
    repo_type="model",
)
state_dict = torch.load(unet_ckpt_path, map_location="cpu")
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# load reconstruction model
print("Loading reconstruction model ...")
model_ckpt_path = hf_hub_download(
    repo_id="TencentARC/InstantMesh",
    filename="instant_mesh_large.ckpt",
    repo_type="model",
)
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location="cpu")["state_dict"]
state_dict = {
    k[14:]: v
    for k, v in state_dict.items()
    if k.startswith("lrm_generator.") and "source_camera" not in k
}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)

print("Loading Finished!")


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background):

    rembg_session = rembg.new_session() if do_remove_background else None

    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)

    return input_image


@spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):

    seed_everything(sample_seed)

    # sampling
    z123_image = pipeline(input_image, num_inference_steps=sample_steps).images[0]

    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)  # (960, 640, 3)
    show_image = rearrange(show_image, "(n h) (m w) c -> (n m) h w c", n=3, m=2)
    show_image = rearrange(show_image, "(n m) h w c -> (n h) (m w) c", n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())

    return z123_image, show_image


@spaces.GPU
def make3d(images):

    global model
    if IS_FLEXICUBES:
        model.init_flexicubes_geometry(device, use_renderer=False)
    model = model.eval()

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = (
        torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
    )  # (3, 960, 640)
    images = rearrange(
        images, "c (n h) (m w) -> (n m) c h w", n=3, m=2
    )  # (6, 3, 320, 320)

    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(
        batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES
    ).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(
        images, (320, 320), interpolation=3, antialias=True
    ).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    print(mesh_fpath)
    mesh_basename = os.path.basename(mesh_fpath).split(".")[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")

    with torch.no_grad():
        # get triplane
        planes = model.forward_planes(images, input_cameras)

        # get mesh
        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=False,
            **infer_config,
        )

        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]

        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)

        print(f"Mesh saved to {mesh_fpath}")

    return mesh_fpath, mesh_glb_fpath


###############################################################################
# Configuration for MeshAnythingv2
###############################################################################
model = load_v2()
device = torch.device("cuda")
accelerator = Accelerator(
    mixed_precision="fp16",
)
model = accelerator.prepare(model)
model.eval()
print("Model loaded to device")


def wireframe_render(mesh):
    views = [(90, 20), (270, 20)]
    mesh.vertices = mesh.vertices[:, [0, 2, 1]]

    bounding_box = mesh.bounds
    center = mesh.centroid
    scale = np.ptp(bounding_box, axis=0).max()

    fig = plt.figure(figsize=(10, 10))

    # Function to render and return each view as an image
    def render_view(mesh, azimuth, elevation):
        ax = fig.add_subplot(111, projection="3d")
        ax.set_axis_off()

        # Extract vertices and faces for plotting
        vertices = mesh.vertices
        faces = mesh.faces

        # Plot faces
        ax.add_collection3d(
            Poly3DCollection(
                vertices[faces],
                facecolors=(0.8, 0.5, 0.2, 1.0),  # Brownish yellow
                edgecolors="k",
                linewidths=0.5,
            )
        )

        # Set limits and center the view on the object
        ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
        ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
        ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)

        # Set view angle
        ax.view_init(elev=elevation, azim=azimuth)

        # Save the figure to a buffer
        buf = io.BytesIO()
        plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0, dpi=300)
        plt.clf()
        buf.seek(0)

        return Image.open(buf)

    # Render each view and store in a list
    images = [render_view(mesh, az, el) for az, el in views]

    # Combine images horizontally
    widths, heights = zip(*(i.size for i in images))
    total_width = sum(widths)
    max_height = max(heights)

    combined_image = Image.new("RGBA", (total_width, max_height))

    x_offset = 0
    for img in images:
        combined_image.paste(img, (x_offset, 0))
        x_offset += img.width

    # Save the combined image
    save_path = f"combined_mesh_view_{int(time.time())}.png"
    combined_image.save(save_path)

    plt.close(fig)
    return save_path


@spaces.GPU(duration=360)
def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
    set_seed(sample_seed)
    print("Seed value:", sample_seed)

    input_mesh = trimesh.load(input_3d)
    pc_list, mesh_list = process_mesh_to_pc(
        [input_mesh], marching_cubes=do_marching_cubes
    )
    pc_normal = pc_list[0]  # 4096, 6
    mesh = mesh_list[0]
    vertices = mesh.vertices

    pc_coor = pc_normal[:, :3]
    normals = pc_normal[:, 3:]

    bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
    # scale mesh and pc
    vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
    vertices = vertices / (bounds[1] - bounds[0]).max()
    mesh.vertices = vertices
    pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
    pc_coor = pc_coor / (bounds[1] - bounds[0]).max()

    mesh.merge_vertices()
    mesh.update_faces(mesh.nondegenerate_faces())
    mesh.update_faces(mesh.unique_faces())
    mesh.remove_unreferenced_vertices()
    mesh.fix_normals()
    try:
        if mesh.visual.vertex_colors is not None:
            orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)

            mesh.visual.vertex_colors = np.tile(
                orange_color, (mesh.vertices.shape[0], 1)
            )
        else:
            orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
            mesh.visual.vertex_colors = np.tile(
                orange_color, (mesh.vertices.shape[0], 1)
            )
    except Exception as e:
        print(e)
    input_save_name = f"processed_input_{int(time.time())}.obj"
    mesh.export(input_save_name)
    input_render_res = wireframe_render(mesh)

    pc_coor = pc_coor / np.abs(pc_coor).max() * 0.99  # input should be from -1 to 1

    assert (
        np.linalg.norm(normals, axis=-1) > 0.99
    ).all(), "normals should be unit vectors, something wrong"
    normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)

    input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
    print("Data loaded")

    # with accelerator.autocast():
    with accelerator.autocast():
        outputs = model(input, do_sampling)
    print("Model inference done")
    recon_mesh = outputs[0]

    valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1)
    recon_mesh = recon_mesh[valid_mask]  # nvalid_face x 3 x 3
    vertices = recon_mesh.reshape(-1, 3).cpu()
    vertices_index = np.arange(len(vertices))  # 0, 1, ..., 3 x face
    triangles = vertices_index.reshape(-1, 3)

    artist_mesh = trimesh.Trimesh(
        vertices=vertices, faces=triangles, force="mesh", merge_primitives=True
    )

    artist_mesh.merge_vertices()
    artist_mesh.update_faces(artist_mesh.nondegenerate_faces())
    artist_mesh.update_faces(artist_mesh.unique_faces())
    artist_mesh.remove_unreferenced_vertices()
    artist_mesh.fix_normals()

    if artist_mesh.visual.vertex_colors is not None:
        orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)

        artist_mesh.visual.vertex_colors = np.tile(
            orange_color, (artist_mesh.vertices.shape[0], 1)
        )
    else:
        orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
        artist_mesh.visual.vertex_colors = np.tile(
            orange_color, (artist_mesh.vertices.shape[0], 1)
        )

    num_faces = len(artist_mesh.faces)

    brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
    face_colors = np.tile(brown_color, (num_faces, 1))

    artist_mesh.visual.face_colors = face_colors
    # add time stamp to avoid cache
    save_name = f"output_{int(time.time())}.obj"
    artist_mesh.export(save_name)
    output_render = wireframe_render(artist_mesh)
    return input_save_name, input_render_res, save_name, output_render


# Output gradio
output_model_obj = gr.Model3D(
    label="Generated Mesh (OBJ Format)",
    display_mode="wireframe",
    clear_color=[1, 1, 1, 1],
)
preprocess_model_obj = gr.Model3D(
    label="Processed Input Mesh (OBJ Format)",
    display_mode="wireframe",
    clear_color=[1, 1, 1, 1],
)
input_image_render = gr.Image(
    label="Wireframe Render of Processed Input Mesh",
)
output_image_render = gr.Image(
    label="Wireframe Render of Generated Mesh",
)

###############################################################################
# Gradio
###############################################################################
HEADER = """
# Generate 3D Assets for Roblox
With this Space, you can generate 3D Assets using AI for your Roblox game for free.
Simply follow the 3 steps below.
1. Generate a 3D Mesh using an image model as input.
2. Simplify the Mesh to get lower polygon number.
3. Download the model and import it in Roblox.

We wrote a tutorial here
"""

STEP1_HEADER = """
## Step 1: Generate the 3D Mesh
For this step, we use <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>InstantMesh</a>, an open-source model for **fast** feedforward 3D mesh generation from a single image.
During this step, you need to upload an image of what you want to generate a 3D Model from.
## 💡 Tips
-  If there's a background, ✅ Remove background.
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
"""

STEP2_HEADER = """
## Step 2: Simplify the generated 3D Mesh
ADD ILLUSTRATION
The 3D Mesh Generated contains too much polygons, fortunately, we can use another AI model to help us optimize it.
The model we use is called [MeshAnythingV2]().
## 💡 Tips
- We don't click on Preprocess with marching Cubes, because in the last step the input mesh was produced by it.
- Limited by computational resources, MeshAnything is trained on meshes with fewer than 1600 faces and cannot generate meshes with more than 1600 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 1600 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
"""

STEP3_HEADER = """
## Step 3 (optional): Shader Smooth
- The mesh simplified in step 2, looks low poly. One way to make it more smooth is to use Shader Smooth.
- You can usually do it in Blender, but we can do it directly here
ADD ILLUSTRATION
ADD SHADERSMOOTH
"""

STEP4_HEADER = """
## Step 4: Get the Mesh Material
"""

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    gr.Markdown(STEP1_HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(
                    label="Processed Image",
                    image_mode="RGBA",
                    type="pil",
                    interactive=False,
                )
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
                    sample_steps = gr.Slider(
                        label="Sample Steps", minimum=30, maximum=75, value=75, step=5
                    )
            with gr.Row():
                step1_submit = gr.Button(
                    "Generate", elem_id="generate", variant="primary"
                )
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    mv_show_images = gr.Image(
                        label="Generated Multi-views",
                        type="pil",
                        width=379,
                        interactive=False,
                    )
        with gr.Column():
            with gr.Tab("OBJ"):
                output_model_obj = gr.Model3D(
                    label="Output Model (OBJ Format)",
                    interactive=False,
                )
                gr.Markdown(
                    "Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage."
                )
            with gr.Tab("GLB"):
                output_model_glb = gr.Model3D(
                    label="Output Model (GLB Format)",
                    interactive=False,
                )
                gr.Markdown(
                    "Note: The model shown here has a darker appearance. Download to get correct results."
                )
                gr.Markdown(
                    """Try a different <b>seed value</b> if the result is unsatisfying (Default: 42)."""
                )

    gr.Markdown(STEP2_HEADER)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_3d = gr.Model3D(
                    label="Input Mesh",
                    display_mode="wireframe",
                    clear_color=[1, 1, 1, 1],
                )

        with gr.Row():
            with gr.Group():
                do_marching_cubes = gr.Checkbox(
                    label="Preprocess with Marching Cubes", value=False
                )
                do_sampling = gr.Checkbox(label="Random Sampling", value=False)
                sample_seed = gr.Number(value=0, label="Seed Value", precision=0)

            with gr.Row():
                step2_submit = gr.Button(
                    "Generate", elem_id="generate", variant="primary"
                )

            with gr.Row(variant="panel"):
                mesh_examples = gr.Examples(
                    examples=[
                        os.path.join("examples", img_name)
                        for img_name in sorted(os.listdir("examples"))
                    ],
                    inputs=input_3d,
                    outputs=[
                        preprocess_model_obj,
                        input_image_render,
                        output_model_obj,
                        output_image_render,
                    ],
                    fn=do_inference,
                    cache_examples=False,
                    examples_per_page=10,
                )

        with gr.Column():
            with gr.Row():
                input_image_render.render()
            with gr.Row():
                with gr.Tab("OBJ"):
                    preprocess_model_obj.render()
            with gr.Row():
                output_image_render.render()
            with gr.Row():
                with gr.Tab("OBJ"):
                    output_model_obj.render()
            with gr.Row():
                gr.Markdown(
                    """Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying"""
                )

    gr.Markdown(STEP3_HEADER)
    gr.Markdown(STEP4_HEADER)

    mv_images = gr.State()

    step1_submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background],
        outputs=[processed_image],
    ).success(
        fn=generate_mvs,
        inputs=[processed_image, sample_steps, sample_seed],
        outputs=[mv_images, mv_show_images],
    ).success(
        fn=make3d, inputs=[mv_images], outputs=[output_model_obj, output_model_glb]
    )

    step2_submit.click(
        fn=do_inference,
        inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
        outputs=[
            preprocess_model_obj,
            input_image_render,
            output_model_obj,
            output_image_render,
        ],
    )


demo.queue(max_size=10)
demo.launch()