|
import gradio as gr
|
|
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
import faiss
|
|
import ast
|
|
|
|
import torch.nn.functional as F
|
|
import torch
|
|
from transformers import AutoModel, AutoTokenizer
|
|
|
|
Encoding_model = 'jinaai/jina-embeddings-v2-base-zh'
|
|
model = AutoModel.from_pretrained(Encoding_model, trust_remote_code=True, torch_dtype=torch.bfloat16)
|
|
model
|
|
|
|
similarity_model = 'Alibaba-NLP/gte-multilingual-base'
|
|
similarity_tokenizer = AutoTokenizer.from_pretrained(similarity_model)
|
|
similarity_model = AutoModel.from_pretrained(similarity_model, trust_remote_code=True)
|
|
|
|
def get_not_empty_data(df,x_column="text",y_column="label"):
|
|
df = df[df[y_column] != "[]"].reset_index(drop=True)
|
|
res_dict = {}
|
|
for idx in df.index:
|
|
if df.loc[idx,x_column] not in res_dict:
|
|
res_dict[df.loc[idx,x_column]] = ast.literal_eval(df.loc[idx,y_column])
|
|
else:
|
|
res_dict[df.loc[idx,x_column]] += ast.literal_eval(df.loc[idx,y_column])
|
|
res_dict = {k:list(set(v)) for k,v in res_dict.items()}
|
|
df_dict = pd.DataFrame({"x":res_dict.keys(),"y":res_dict.values()})
|
|
return df_dict
|
|
|
|
data_all = pd.read_excel("data_Excel_format.xlsx")
|
|
df_dict_all = get_not_empty_data(data_all)
|
|
x_dict = df_dict_all["x"].values
|
|
y_dict = df_dict_all["y"].values
|
|
|
|
def calc_scores(x):
|
|
return (x[:1] @ x[1:].T)
|
|
|
|
def get_idxs(threshold,max_len,arr):
|
|
res = np.where(arr >= threshold)[0]
|
|
if len(res)<max_len:
|
|
return res
|
|
res = res[np.argsort(-arr[res])][:3]
|
|
return res
|
|
|
|
def merge_set_to_list(set_list):
|
|
res = set()
|
|
for i in set_list:
|
|
res = res | i
|
|
return res
|
|
|
|
|
|
def get_predict_result(index,score,threshold,max_len):
|
|
score = score.flatten()
|
|
index = index.flatten()
|
|
index_of_index = np.where(score >= threshold)[0]
|
|
if len(index_of_index)>=max_len:
|
|
index_of_index = index_of_index[np.argsort(-index[index_of_index])][:3]
|
|
if len(index_of_index)==0:
|
|
return {},[]
|
|
res_index = index[index_of_index]
|
|
res = merge_set_to_list([set(i) for i in y_dict[res_index]])
|
|
return res,x_dict[res_index]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
index = faiss.read_index("all_index.faiss")
|
|
|
|
def predict_label(x,threshold=0.85,n_nearest=10,max_result_len=3):
|
|
bsize=1
|
|
y_pred = []
|
|
with torch.no_grad():
|
|
for i in range(0,len(x),bsize):
|
|
sentences = x[i:i+bsize]
|
|
vec = model.encode(sentences)
|
|
faiss.normalize_L2(vec)
|
|
scores, indexes = index.search(vec,n_nearest)
|
|
x_pred = np.array([[sentences[j]]+s.tolist() for j,s in enumerate(x_dict[indexes])])
|
|
batch_dict = similarity_tokenizer(x_pred.flatten().tolist(), max_length=768, padding=True, truncation=True, return_tensors='pt')
|
|
outputs = similarity_model(**batch_dict)
|
|
dimension=768
|
|
embeddings = outputs.last_hidden_state[:, 0][:dimension]
|
|
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
embeddings = embeddings.view(len(x_pred),n_nearest+1,dimension).detach().cpu().numpy()
|
|
scores = [calc_scores(embeddings[b]) for b in range(embeddings.shape[0])]
|
|
|
|
pred = [get_predict_result(indexes[k],scores[k],threshold=threshold,max_len=max_result_len) for k in range(len(scores))]
|
|
y_pred.append([i[0] for i in pred])
|
|
return y_pred
|
|
|
|
CSS_Content = """
|
|
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="UTF-8">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
|
<style>
|
|
#custom_id {
|
|
border: 2px solid red;
|
|
padding: 10px;
|
|
background-color: lightgray;
|
|
}
|
|
</style>
|
|
</head>
|
|
</html>
|
|
<span style="color: red;line-height:1;">红色字体:潜在风险</span><br>
|
|
<span style="color: blue;line-height:1;">蓝色字体:权限获取</span><br>
|
|
<span style="color: purple;line-height:1;">紫色字体:数据收集</span><br>
|
|
<span style="color: green;line-height:1;">绿色字体:数据、权限管理</span><br>
|
|
<span style="color: brown;line-height:1;">棕色字体:共享、委托、转让、公开(披露)</span><br>
|
|
"""
|
|
|
|
color_dict = {"潜在风险":"red",
|
|
"权限获取":"blue",
|
|
"数据收集":"purple",
|
|
"数据、权限管理":"green",
|
|
"共享、委托、转让、公开(披露)":"brown"
|
|
}
|
|
|
|
|
|
|
|
def generate_HTML(text,threshold=0.85,n_nearest=10,max_result_len=3):
|
|
sentences = text.split("\n")
|
|
sentences = [i for i in map(lambda x:x.split("。"),sentences)]
|
|
res = CSS_Content
|
|
for paragraph in sentences:
|
|
tmp_res = []
|
|
pred_label = predict_label(paragraph,threshold,n_nearest,max_result_len)
|
|
for i,x in enumerate(pred_label):
|
|
pre = "<span"
|
|
if len(x[0])>0:
|
|
for j in color_dict.keys():
|
|
if j in x[0]:
|
|
pre += f' style="color: {color_dict[j]};line-height:1;"'
|
|
break
|
|
tmp_res.append(pre+">"+paragraph[i]+"</span>")
|
|
res += "。".join(tmp_res)
|
|
res += "<br>"
|
|
return res
|
|
|
|
with gr.Blocks() as demo:
|
|
with gr.Row():
|
|
input_text = gr.Textbox(lines=25,label="输入")
|
|
|
|
with gr.Row():
|
|
threshold = gr.Slider(minimum=0.5,maximum=0.85,value=0.75,step=0.05,interactive=True,label="相似度阈值")
|
|
n_nearest = gr.Slider(minimum=3,maximum=10,value=10,step=1,interactive=True,label="粗筛语句数量")
|
|
max_result_len = gr.Slider(minimum=1,maximum=5,value=3,step=1,interactive=True,label="精筛语句数量")
|
|
with gr.Row():
|
|
submit_button = gr.Button("检测")
|
|
with gr.Row():
|
|
output_text = gr.HTML(CSS_Content)
|
|
output_text.elem_id="custom_id"
|
|
|
|
submit_button.click(fn=generate_HTML, inputs=[input_text,threshold,n_nearest,max_result_len], outputs=output_text)
|
|
|
|
demo.launch() |