ThornRugal's picture
update app.py
0b60ac0 verified
import gradio as gr
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import faiss
import ast
import torch.nn.functional as F
import torch
from transformers import AutoModel, AutoTokenizer
Encoding_model = 'jinaai/jina-embeddings-v2-base-zh'
model = AutoModel.from_pretrained(Encoding_model, trust_remote_code=True, torch_dtype=torch.bfloat16)
model#.to("cuda")
similarity_model = 'Alibaba-NLP/gte-multilingual-base'
similarity_tokenizer = AutoTokenizer.from_pretrained(similarity_model)
similarity_model = AutoModel.from_pretrained(similarity_model, trust_remote_code=True)#.to("cuda")
def get_not_empty_data(df,x_column="text",y_column="label"):
df = df[df[y_column] != "[]"].reset_index(drop=True)
res_dict = {}
for idx in df.index:
if df.loc[idx,x_column] not in res_dict:
res_dict[df.loc[idx,x_column]] = ast.literal_eval(df.loc[idx,y_column])
else:
res_dict[df.loc[idx,x_column]] += ast.literal_eval(df.loc[idx,y_column])
res_dict = {k:list(set(v)) for k,v in res_dict.items()}
df_dict = pd.DataFrame({"x":res_dict.keys(),"y":res_dict.values()})
return df_dict
data_all = pd.read_excel("data_Excel_format.xlsx")
df_dict_all = get_not_empty_data(data_all)
x_dict = df_dict_all["x"].values
y_dict = df_dict_all["y"].values
def calc_scores(x):
return (x[:1] @ x[1:].T)
def get_idxs(threshold,max_len,arr):
res = np.where(arr >= threshold)[0]
if len(res)<max_len:
return res
res = res[np.argsort(-arr[res])][:3]
return res
def merge_set_to_list(set_list):
res = set()
for i in set_list:
res = res | i
return res
def get_predict_result(index,score,threshold,max_len):
score = score.flatten()
index = index.flatten()
index_of_index = np.where(score >= threshold)[0]
if len(index_of_index)>=max_len:
index_of_index = index_of_index[np.argsort(-index[index_of_index])][:3]
if len(index_of_index)==0:
return {},[]
res_index = index[index_of_index]
res = merge_set_to_list([set(i) for i in y_dict[res_index]])
return res,x_dict[res_index]
# vec = np.empty(shape=[0,768],dtype="float32")
# bsize = 256
# with torch.no_grad():
# for i in range(0,len(x),bsize):
# tmp = model.encode(x[i:i+bsize])
# vec = np.concatenate([vec,tmp])
# index = faiss.IndexFlatIP(768)
# faiss.normalize_L2(vec)
# index.add(vec)
# faiss.write_index(index,"all_index.faiss")
index = faiss.read_index("all_index.faiss")
def predict_label(x,threshold=0.85,n_nearest=10,max_result_len=3):
bsize=1
y_pred = []
with torch.no_grad():
for i in range(0,len(x),bsize):
sentences = x[i:i+bsize]
vec = model.encode(sentences)
faiss.normalize_L2(vec)
scores, indexes = index.search(vec,n_nearest)
x_pred = np.array([[sentences[j]]+s.tolist() for j,s in enumerate(x_dict[indexes])])
batch_dict = similarity_tokenizer(x_pred.flatten().tolist(), max_length=768, padding=True, truncation=True, return_tensors='pt')#.to("cuda")
outputs = similarity_model(**batch_dict)
dimension=768
embeddings = outputs.last_hidden_state[:, 0][:dimension]
embeddings = F.normalize(embeddings, p=2, dim=1)
embeddings = embeddings.view(len(x_pred),n_nearest+1,dimension).detach().cpu().numpy()
scores = [calc_scores(embeddings[b]) for b in range(embeddings.shape[0])]
pred = [get_predict_result(indexes[k],scores[k],threshold=threshold,max_len=max_result_len) for k in range(len(scores))]
y_pred.append([i[0] for i in pred])
return y_pred
CSS_Content = """
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
#custom_id {
border: 2px solid red;
padding: 10px;
background-color: lightgray;
}
</style>
</head>
</html>
<span style="color: red;line-height:1;">红色字体:潜在风险</span><br>
<span style="color: blue;line-height:1;">蓝色字体:权限获取</span><br>
<span style="color: purple;line-height:1;">紫色字体:数据收集</span><br>
<span style="color: green;line-height:1;">绿色字体:数据、权限管理</span><br>
<span style="color: brown;line-height:1;">棕色字体:共享、委托、转让、公开(披露)</span><br>
"""
color_dict = {"潜在风险":"red",
"权限获取":"blue",
"数据收集":"purple",
"数据、权限管理":"green",
"共享、委托、转让、公开(披露)":"brown"
}
def generate_HTML(text,threshold=0.85,n_nearest=10,max_result_len=3):
sentences = text.split("\n")
sentences = [i for i in map(lambda x:x.split("。"),sentences)]
res = CSS_Content
for paragraph in sentences:
tmp_res = []
pred_label = predict_label(paragraph,threshold,n_nearest,max_result_len)
for i,x in enumerate(pred_label):
pre = "<span"
if len(x[0])>0:
for j in color_dict.keys(): #color dict重要性递减,所以只取第一个标签的颜色
if j in x[0]:
pre += f' style="color: {color_dict[j]};line-height:1;"'
break
tmp_res.append(pre+">"+paragraph[i]+"</span>")
res += "。".join(tmp_res)
res += "<br>"
return res
with gr.Blocks() as demo:
with gr.Row():
input_text = gr.Textbox(lines=25,label="输入")
with gr.Row():
threshold = gr.Slider(minimum=0.5,maximum=0.85,value=0.75,step=0.05,interactive=True,label="相似度阈值")
n_nearest = gr.Slider(minimum=3,maximum=10,value=10,step=1,interactive=True,label="粗筛语句数量")
max_result_len = gr.Slider(minimum=1,maximum=5,value=3,step=1,interactive=True,label="精筛语句数量")
with gr.Row():
submit_button = gr.Button("检测")
with gr.Row():
output_text = gr.HTML(CSS_Content)
output_text.elem_id="custom_id"
submit_button.click(fn=generate_HTML, inputs=[input_text,threshold,n_nearest,max_result_len], outputs=output_text)
demo.launch()