Spaces:
Runtime error
Runtime error
File size: 7,696 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from dataclasses import dataclass, field
from typing import List
from TTS.tts.configs.shared_configs import BaseTTSConfig
from TTS.tts.models.delightful_tts import DelightfulTtsArgs, DelightfulTtsAudioConfig, VocoderConfig
@dataclass
class DelightfulTTSConfig(BaseTTSConfig):
"""
Configuration class for the DelightfulTTS model.
Attributes:
model (str): Name of the model ("delightful_tts").
audio (DelightfulTtsAudioConfig): Configuration for audio settings.
model_args (DelightfulTtsArgs): Configuration for model arguments.
use_attn_priors (bool): Whether to use attention priors.
vocoder (VocoderConfig): Configuration for the vocoder.
init_discriminator (bool): Whether to initialize the discriminator.
steps_to_start_discriminator (int): Number of steps to start the discriminator.
grad_clip (List[float]): Gradient clipping values.
lr_gen (float): Learning rate for the gan generator.
lr_disc (float): Learning rate for the gan discriminator.
lr_scheduler_gen (str): Name of the learning rate scheduler for the generator.
lr_scheduler_gen_params (dict): Parameters for the learning rate scheduler for the generator.
lr_scheduler_disc (str): Name of the learning rate scheduler for the discriminator.
lr_scheduler_disc_params (dict): Parameters for the learning rate scheduler for the discriminator.
scheduler_after_epoch (bool): Whether to schedule after each epoch.
optimizer (str): Name of the optimizer.
optimizer_params (dict): Parameters for the optimizer.
ssim_loss_alpha (float): Alpha value for the SSIM loss.
mel_loss_alpha (float): Alpha value for the mel loss.
aligner_loss_alpha (float): Alpha value for the aligner loss.
pitch_loss_alpha (float): Alpha value for the pitch loss.
energy_loss_alpha (float): Alpha value for the energy loss.
u_prosody_loss_alpha (float): Alpha value for the utterance prosody loss.
p_prosody_loss_alpha (float): Alpha value for the phoneme prosody loss.
dur_loss_alpha (float): Alpha value for the duration loss.
char_dur_loss_alpha (float): Alpha value for the character duration loss.
binary_align_loss_alpha (float): Alpha value for the binary alignment loss.
binary_loss_warmup_epochs (int): Number of warm-up epochs for the binary loss.
disc_loss_alpha (float): Alpha value for the discriminator loss.
gen_loss_alpha (float): Alpha value for the generator loss.
feat_loss_alpha (float): Alpha value for the feature loss.
vocoder_mel_loss_alpha (float): Alpha value for the vocoder mel loss.
multi_scale_stft_loss_alpha (float): Alpha value for the multi-scale STFT loss.
multi_scale_stft_loss_params (dict): Parameters for the multi-scale STFT loss.
return_wav (bool): Whether to return audio waveforms.
use_weighted_sampler (bool): Whether to use a weighted sampler.
weighted_sampler_attrs (dict): Attributes for the weighted sampler.
weighted_sampler_multipliers (dict): Multipliers for the weighted sampler.
r (int): Value for the `r` override.
compute_f0 (bool): Whether to compute F0 values.
f0_cache_path (str): Path to the F0 cache.
attn_prior_cache_path (str): Path to the attention prior cache.
num_speakers (int): Number of speakers.
use_speaker_embedding (bool): Whether to use speaker embedding.
speakers_file (str): Path to the speaker file.
speaker_embedding_channels (int): Number of channels for the speaker embedding.
language_ids_file (str): Path to the language IDs file.
"""
model: str = "delightful_tts"
# model specific params
audio: DelightfulTtsAudioConfig = field(default_factory=DelightfulTtsAudioConfig)
model_args: DelightfulTtsArgs = field(default_factory=DelightfulTtsArgs)
use_attn_priors: bool = True
# vocoder
vocoder: VocoderConfig = field(default_factory=VocoderConfig)
init_discriminator: bool = True
# optimizer
steps_to_start_discriminator: int = 200000
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000])
lr_gen: float = 0.0002
lr_disc: float = 0.0002
lr_scheduler_gen: str = "ExponentialLR"
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
lr_scheduler_disc: str = "ExponentialLR"
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1})
scheduler_after_epoch: bool = True
optimizer: str = "AdamW"
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01})
# acoustic model loss params
ssim_loss_alpha: float = 1.0
mel_loss_alpha: float = 1.0
aligner_loss_alpha: float = 1.0
pitch_loss_alpha: float = 1.0
energy_loss_alpha: float = 1.0
u_prosody_loss_alpha: float = 0.5
p_prosody_loss_alpha: float = 0.5
dur_loss_alpha: float = 1.0
char_dur_loss_alpha: float = 0.01
binary_align_loss_alpha: float = 0.1
binary_loss_warmup_epochs: int = 10
# vocoder loss params
disc_loss_alpha: float = 1.0
gen_loss_alpha: float = 1.0
feat_loss_alpha: float = 1.0
vocoder_mel_loss_alpha: float = 10.0
multi_scale_stft_loss_alpha: float = 2.5
multi_scale_stft_loss_params: dict = field(
default_factory=lambda: {
"n_ffts": [1024, 2048, 512],
"hop_lengths": [120, 240, 50],
"win_lengths": [600, 1200, 240],
}
)
# data loader params
return_wav: bool = True
use_weighted_sampler: bool = False
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
# overrides
r: int = 1
# dataset configs
compute_f0: bool = True
f0_cache_path: str = None
attn_prior_cache_path: str = None
# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
use_speaker_embedding: bool = False
speakers_file: str = None
speaker_embedding_channels: int = 256
language_ids_file: str = None
use_language_embedding: bool = False
# use d-vectors
use_d_vector_file: bool = False
d_vector_file: str = None
d_vector_dim: int = None
# testing
test_sentences: List[List[str]] = field(
default_factory=lambda: [
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."],
["Be a voice, not an echo."],
["I'm sorry Dave. I'm afraid I can't do that."],
["This cake is great. It's so delicious and moist."],
["Prior to November 22, 1963."],
]
)
def __post_init__(self):
# Pass multi-speaker parameters to the model args as `model.init_multispeaker()` looks for it there.
if self.num_speakers > 0:
self.model_args.num_speakers = self.num_speakers
# speaker embedding settings
if self.use_speaker_embedding:
self.model_args.use_speaker_embedding = True
if self.speakers_file:
self.model_args.speakers_file = self.speakers_file
# d-vector settings
if self.use_d_vector_file:
self.model_args.use_d_vector_file = True
if self.d_vector_dim is not None and self.d_vector_dim > 0:
self.model_args.d_vector_dim = self.d_vector_dim
if self.d_vector_file:
self.model_args.d_vector_file = self.d_vector_file
|