Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import nn | |
from TTS.tts.layers.generic.gated_conv import GatedConvBlock | |
from TTS.tts.layers.generic.res_conv_bn import ResidualConv1dBNBlock | |
from TTS.tts.layers.generic.time_depth_sep_conv import TimeDepthSeparableConvBlock | |
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor | |
from TTS.tts.layers.glow_tts.glow import ResidualConv1dLayerNormBlock | |
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer | |
from TTS.tts.utils.helpers import sequence_mask | |
class Encoder(nn.Module): | |
"""Glow-TTS encoder module. | |
:: | |
embedding -> <prenet> -> encoder_module -> <postnet> --> proj_mean | |
| | |
|-> proj_var | |
| | |
|-> concat -> duration_predictor | |
↑ | |
speaker_embed | |
Args: | |
num_chars (int): number of characters. | |
out_channels (int): number of output channels. | |
hidden_channels (int): encoder's embedding size. | |
hidden_channels_ffn (int): transformer's feed-forward channels. | |
kernel_size (int): kernel size for conv layers and duration predictor. | |
dropout_p (float): dropout rate for any dropout layer. | |
mean_only (bool): if True, output only mean values and use constant std. | |
use_prenet (bool): if True, use pre-convolutional layers before transformer layers. | |
c_in_channels (int): number of channels in conditional input. | |
Shapes: | |
- input: (B, T, C) | |
:: | |
suggested encoder params... | |
for encoder_type == 'rel_pos_transformer' | |
encoder_params={ | |
'kernel_size':3, | |
'dropout_p': 0.1, | |
'num_layers': 6, | |
'num_heads': 2, | |
'hidden_channels_ffn': 768, # 4 times the hidden_channels | |
'input_length': None | |
} | |
for encoder_type == 'gated_conv' | |
encoder_params={ | |
'kernel_size':5, | |
'dropout_p': 0.1, | |
'num_layers': 9, | |
} | |
for encoder_type == 'residual_conv_bn' | |
encoder_params={ | |
"kernel_size": 4, | |
"dilations": [1, 2, 4, 1, 2, 4, 1, 2, 4, 1, 2, 4, 1], | |
"num_conv_blocks": 2, | |
"num_res_blocks": 13 | |
} | |
for encoder_type == 'time_depth_separable' | |
encoder_params={ | |
"kernel_size": 5, | |
'num_layers': 9, | |
} | |
""" | |
def __init__( | |
self, | |
num_chars, | |
out_channels, | |
hidden_channels, | |
hidden_channels_dp, | |
encoder_type, | |
encoder_params, | |
dropout_p_dp=0.1, | |
mean_only=False, | |
use_prenet=True, | |
c_in_channels=0, | |
): | |
super().__init__() | |
# class arguments | |
self.num_chars = num_chars | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.hidden_channels_dp = hidden_channels_dp | |
self.dropout_p_dp = dropout_p_dp | |
self.mean_only = mean_only | |
self.use_prenet = use_prenet | |
self.c_in_channels = c_in_channels | |
self.encoder_type = encoder_type | |
# embedding layer | |
self.emb = nn.Embedding(num_chars, hidden_channels) | |
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) | |
# init encoder module | |
if encoder_type.lower() == "rel_pos_transformer": | |
if use_prenet: | |
self.prenet = ResidualConv1dLayerNormBlock( | |
hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5 | |
) | |
self.encoder = RelativePositionTransformer( | |
hidden_channels, hidden_channels, hidden_channels, **encoder_params | |
) | |
elif encoder_type.lower() == "gated_conv": | |
self.encoder = GatedConvBlock(hidden_channels, **encoder_params) | |
elif encoder_type.lower() == "residual_conv_bn": | |
if use_prenet: | |
self.prenet = nn.Sequential(nn.Conv1d(hidden_channels, hidden_channels, 1), nn.ReLU()) | |
self.encoder = ResidualConv1dBNBlock(hidden_channels, hidden_channels, hidden_channels, **encoder_params) | |
self.postnet = nn.Sequential( | |
nn.Conv1d(self.hidden_channels, self.hidden_channels, 1), nn.BatchNorm1d(self.hidden_channels) | |
) | |
elif encoder_type.lower() == "time_depth_separable": | |
if use_prenet: | |
self.prenet = ResidualConv1dLayerNormBlock( | |
hidden_channels, hidden_channels, hidden_channels, kernel_size=5, num_layers=3, dropout_p=0.5 | |
) | |
self.encoder = TimeDepthSeparableConvBlock( | |
hidden_channels, hidden_channels, hidden_channels, **encoder_params | |
) | |
else: | |
raise ValueError(" [!] Unkown encoder type.") | |
# final projection layers | |
self.proj_m = nn.Conv1d(hidden_channels, out_channels, 1) | |
if not mean_only: | |
self.proj_s = nn.Conv1d(hidden_channels, out_channels, 1) | |
# duration predictor | |
self.duration_predictor = DurationPredictor( | |
hidden_channels + c_in_channels, hidden_channels_dp, 3, dropout_p_dp | |
) | |
def forward(self, x, x_lengths, g=None): | |
""" | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_lengths: :math:`[B]` | |
- g (optional): :math:`[B, 1, T]` | |
""" | |
# embedding layer | |
# [B ,T, D] | |
x = self.emb(x) * math.sqrt(self.hidden_channels) | |
# [B, D, T] | |
x = torch.transpose(x, 1, -1) | |
# compute input sequence mask | |
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) | |
# prenet | |
if hasattr(self, "prenet") and self.use_prenet: | |
x = self.prenet(x, x_mask) | |
# encoder | |
x = self.encoder(x, x_mask) | |
# postnet | |
if hasattr(self, "postnet"): | |
x = self.postnet(x) * x_mask | |
# set duration predictor input | |
if g is not None: | |
g_exp = g.expand(-1, -1, x.size(-1)) | |
x_dp = torch.cat([x.detach(), g_exp], 1) | |
else: | |
x_dp = x.detach() | |
# final projection layer | |
x_m = self.proj_m(x) * x_mask | |
if not self.mean_only: | |
x_logs = self.proj_s(x) * x_mask | |
else: | |
x_logs = torch.zeros_like(x_m) | |
# duration predictor | |
logw = self.duration_predictor(x_dp, x_mask) | |
return x_m, x_logs, logw, x_mask | |