Spaces:
Runtime error
Runtime error
import torch | |
import torchaudio | |
from torch import nn | |
from torch.nn import Conv1d, ConvTranspose1d | |
from torch.nn import functional as F | |
from torch.nn.utils.parametrizations import weight_norm | |
from torch.nn.utils.parametrize import remove_parametrizations | |
from TTS.utils.io import load_fsspec | |
LRELU_SLOPE = 0.1 | |
def get_padding(k, d): | |
return int((k * d - d) / 2) | |
class ResBlock1(torch.nn.Module): | |
"""Residual Block Type 1. It has 3 convolutional layers in each convolutional block. | |
Network:: | |
x -> lrelu -> conv1_1 -> conv1_2 -> conv1_3 -> z -> lrelu -> conv2_1 -> conv2_2 -> conv2_3 -> o -> + -> o | |
|--------------------------------------------------------------------------------------------------| | |
Args: | |
channels (int): number of hidden channels for the convolutional layers. | |
kernel_size (int): size of the convolution filter in each layer. | |
dilations (list): list of dilation value for each conv layer in a block. | |
""" | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super().__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): input tensor. | |
Returns: | |
Tensor: output tensor. | |
Shapes: | |
x: [B, C, T] | |
""" | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
xt = c2(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_parametrizations(l, "weight") | |
for l in self.convs2: | |
remove_parametrizations(l, "weight") | |
class ResBlock2(torch.nn.Module): | |
"""Residual Block Type 2. It has 1 convolutional layers in each convolutional block. | |
Network:: | |
x -> lrelu -> conv1-> -> z -> lrelu -> conv2-> o -> + -> o | |
|---------------------------------------------------| | |
Args: | |
channels (int): number of hidden channels for the convolutional layers. | |
kernel_size (int): size of the convolution filter in each layer. | |
dilations (list): list of dilation value for each conv layer in a block. | |
""" | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | |
super().__init__() | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
] | |
) | |
def forward(self, x): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
xt = c(xt) | |
x = xt + x | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_parametrizations(l, "weight") | |
class HifiganGenerator(torch.nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
resblock_type, | |
resblock_dilation_sizes, | |
resblock_kernel_sizes, | |
upsample_kernel_sizes, | |
upsample_initial_channel, | |
upsample_factors, | |
inference_padding=5, | |
cond_channels=0, | |
conv_pre_weight_norm=True, | |
conv_post_weight_norm=True, | |
conv_post_bias=True, | |
cond_in_each_up_layer=False, | |
): | |
r"""HiFiGAN Generator with Multi-Receptive Field Fusion (MRF) | |
Network: | |
x -> lrelu -> upsampling_layer -> resblock1_k1x1 -> z1 -> + -> z_sum / #resblocks -> lrelu -> conv_post_7x1 -> tanh -> o | |
.. -> zI ---| | |
resblockN_kNx1 -> zN ---' | |
Args: | |
in_channels (int): number of input tensor channels. | |
out_channels (int): number of output tensor channels. | |
resblock_type (str): type of the `ResBlock`. '1' or '2'. | |
resblock_dilation_sizes (List[List[int]]): list of dilation values in each layer of a `ResBlock`. | |
resblock_kernel_sizes (List[int]): list of kernel sizes for each `ResBlock`. | |
upsample_kernel_sizes (List[int]): list of kernel sizes for each transposed convolution. | |
upsample_initial_channel (int): number of channels for the first upsampling layer. This is divided by 2 | |
for each consecutive upsampling layer. | |
upsample_factors (List[int]): upsampling factors (stride) for each upsampling layer. | |
inference_padding (int): constant padding applied to the input at inference time. Defaults to 5. | |
""" | |
super().__init__() | |
self.inference_padding = inference_padding | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_factors) | |
self.cond_in_each_up_layer = cond_in_each_up_layer | |
# initial upsampling layers | |
self.conv_pre = weight_norm(Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)) | |
resblock = ResBlock1 if resblock_type == "1" else ResBlock2 | |
# upsampling layers | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_factors, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
# MRF blocks | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
self.resblocks.append(resblock(ch, k, d)) | |
# post convolution layer | |
self.conv_post = weight_norm(Conv1d(ch, out_channels, 7, 1, padding=3, bias=conv_post_bias)) | |
if cond_channels > 0: | |
self.cond_layer = nn.Conv1d(cond_channels, upsample_initial_channel, 1) | |
if not conv_pre_weight_norm: | |
remove_parametrizations(self.conv_pre, "weight") | |
if not conv_post_weight_norm: | |
remove_parametrizations(self.conv_post, "weight") | |
if self.cond_in_each_up_layer: | |
self.conds = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
self.conds.append(nn.Conv1d(cond_channels, ch, 1)) | |
def forward(self, x, g=None): | |
""" | |
Args: | |
x (Tensor): feature input tensor. | |
g (Tensor): global conditioning input tensor. | |
Returns: | |
Tensor: output waveform. | |
Shapes: | |
x: [B, C, T] | |
Tensor: [B, 1, T] | |
""" | |
o = self.conv_pre(x) | |
if hasattr(self, "cond_layer"): | |
o = o + self.cond_layer(g) | |
for i in range(self.num_upsamples): | |
o = F.leaky_relu(o, LRELU_SLOPE) | |
o = self.ups[i](o) | |
if self.cond_in_each_up_layer: | |
o = o + self.conds[i](g) | |
z_sum = None | |
for j in range(self.num_kernels): | |
if z_sum is None: | |
z_sum = self.resblocks[i * self.num_kernels + j](o) | |
else: | |
z_sum += self.resblocks[i * self.num_kernels + j](o) | |
o = z_sum / self.num_kernels | |
o = F.leaky_relu(o) | |
o = self.conv_post(o) | |
o = torch.tanh(o) | |
return o | |
def inference(self, c): | |
""" | |
Args: | |
x (Tensor): conditioning input tensor. | |
Returns: | |
Tensor: output waveform. | |
Shapes: | |
x: [B, C, T] | |
Tensor: [B, 1, T] | |
""" | |
c = c.to(self.conv_pre.weight.device) | |
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate") | |
return self.forward(c) | |
def remove_weight_norm(self): | |
print("Removing weight norm...") | |
for l in self.ups: | |
remove_parametrizations(l, "weight") | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
remove_parametrizations(self.conv_pre, "weight") | |
remove_parametrizations(self.conv_post, "weight") | |
def load_checkpoint( | |
self, config, checkpoint_path, eval=False, cache=False | |
): # pylint: disable=unused-argument, redefined-builtin | |
state = torch.load(checkpoint_path, map_location=torch.device("cpu")) | |
self.load_state_dict(state["model"]) | |
if eval: | |
self.eval() | |
assert not self.training | |
self.remove_weight_norm() | |
class SELayer(nn.Module): | |
def __init__(self, channel, reduction=8): | |
super(SELayer, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.fc = nn.Sequential( | |
nn.Linear(channel, channel // reduction), | |
nn.ReLU(inplace=True), | |
nn.Linear(channel // reduction, channel), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
b, c, _, _ = x.size() | |
y = self.avg_pool(x).view(b, c) | |
y = self.fc(y).view(b, c, 1, 1) | |
return x * y | |
class SEBasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8): | |
super(SEBasicBlock, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.se = SELayer(planes, reduction) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.relu(out) | |
out = self.bn1(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.se(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
def set_init_dict(model_dict, checkpoint_state, c): | |
# Partial initialization: if there is a mismatch with new and old layer, it is skipped. | |
for k, v in checkpoint_state.items(): | |
if k not in model_dict: | |
print(" | > Layer missing in the model definition: {}".format(k)) | |
# 1. filter out unnecessary keys | |
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict} | |
# 2. filter out different size layers | |
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()} | |
# 3. skip reinit layers | |
if c.has("reinit_layers") and c.reinit_layers is not None: | |
for reinit_layer_name in c.reinit_layers: | |
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k} | |
# 4. overwrite entries in the existing state dict | |
model_dict.update(pretrained_dict) | |
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict))) | |
return model_dict | |
class PreEmphasis(nn.Module): | |
def __init__(self, coefficient=0.97): | |
super().__init__() | |
self.coefficient = coefficient | |
self.register_buffer("filter", torch.FloatTensor([-self.coefficient, 1.0]).unsqueeze(0).unsqueeze(0)) | |
def forward(self, x): | |
assert len(x.size()) == 2 | |
x = torch.nn.functional.pad(x.unsqueeze(1), (1, 0), "reflect") | |
return torch.nn.functional.conv1d(x, self.filter).squeeze(1) | |
class ResNetSpeakerEncoder(nn.Module): | |
"""This is copied from 🐸TTS to remove it from the dependencies.""" | |
# pylint: disable=W0102 | |
def __init__( | |
self, | |
input_dim=64, | |
proj_dim=512, | |
layers=[3, 4, 6, 3], | |
num_filters=[32, 64, 128, 256], | |
encoder_type="ASP", | |
log_input=False, | |
use_torch_spec=False, | |
audio_config=None, | |
): | |
super(ResNetSpeakerEncoder, self).__init__() | |
self.encoder_type = encoder_type | |
self.input_dim = input_dim | |
self.log_input = log_input | |
self.use_torch_spec = use_torch_spec | |
self.audio_config = audio_config | |
self.proj_dim = proj_dim | |
self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1) | |
self.relu = nn.ReLU(inplace=True) | |
self.bn1 = nn.BatchNorm2d(num_filters[0]) | |
self.inplanes = num_filters[0] | |
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0]) | |
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2)) | |
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2)) | |
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2)) | |
self.instancenorm = nn.InstanceNorm1d(input_dim) | |
if self.use_torch_spec: | |
self.torch_spec = torch.nn.Sequential( | |
PreEmphasis(audio_config["preemphasis"]), | |
torchaudio.transforms.MelSpectrogram( | |
sample_rate=audio_config["sample_rate"], | |
n_fft=audio_config["fft_size"], | |
win_length=audio_config["win_length"], | |
hop_length=audio_config["hop_length"], | |
window_fn=torch.hamming_window, | |
n_mels=audio_config["num_mels"], | |
), | |
) | |
else: | |
self.torch_spec = None | |
outmap_size = int(self.input_dim / 8) | |
self.attention = nn.Sequential( | |
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1), | |
nn.ReLU(), | |
nn.BatchNorm1d(128), | |
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1), | |
nn.Softmax(dim=2), | |
) | |
if self.encoder_type == "SAP": | |
out_dim = num_filters[3] * outmap_size | |
elif self.encoder_type == "ASP": | |
out_dim = num_filters[3] * outmap_size * 2 | |
else: | |
raise ValueError("Undefined encoder") | |
self.fc = nn.Linear(out_dim, proj_dim) | |
self._init_layers() | |
def _init_layers(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
def create_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
# pylint: disable=R0201 | |
def new_parameter(self, *size): | |
out = nn.Parameter(torch.FloatTensor(*size)) | |
nn.init.xavier_normal_(out) | |
return out | |
def forward(self, x, l2_norm=False): | |
"""Forward pass of the model. | |
Args: | |
x (Tensor): Raw waveform signal or spectrogram frames. If input is a waveform, `torch_spec` must be `True` | |
to compute the spectrogram on-the-fly. | |
l2_norm (bool): Whether to L2-normalize the outputs. | |
Shapes: | |
- x: :math:`(N, 1, T_{in})` or :math:`(N, D_{spec}, T_{in})` | |
""" | |
x.squeeze_(1) | |
# if you torch spec compute it otherwise use the mel spec computed by the AP | |
if self.use_torch_spec: | |
x = self.torch_spec(x) | |
if self.log_input: | |
x = (x + 1e-6).log() | |
x = self.instancenorm(x).unsqueeze(1) | |
x = self.conv1(x) | |
x = self.relu(x) | |
x = self.bn1(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = x.reshape(x.size()[0], -1, x.size()[-1]) | |
w = self.attention(x) | |
if self.encoder_type == "SAP": | |
x = torch.sum(x * w, dim=2) | |
elif self.encoder_type == "ASP": | |
mu = torch.sum(x * w, dim=2) | |
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu**2).clamp(min=1e-5)) | |
x = torch.cat((mu, sg), 1) | |
x = x.view(x.size()[0], -1) | |
x = self.fc(x) | |
if l2_norm: | |
x = torch.nn.functional.normalize(x, p=2, dim=1) | |
return x | |
def load_checkpoint( | |
self, | |
checkpoint_path: str, | |
eval: bool = False, | |
use_cuda: bool = False, | |
criterion=None, | |
cache=False, | |
): | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache) | |
try: | |
self.load_state_dict(state["model"]) | |
print(" > Model fully restored. ") | |
except (KeyError, RuntimeError) as error: | |
# If eval raise the error | |
if eval: | |
raise error | |
print(" > Partial model initialization.") | |
model_dict = self.state_dict() | |
model_dict = set_init_dict(model_dict, state["model"]) | |
self.load_state_dict(model_dict) | |
del model_dict | |
# load the criterion for restore_path | |
if criterion is not None and "criterion" in state: | |
try: | |
criterion.load_state_dict(state["criterion"]) | |
except (KeyError, RuntimeError) as error: | |
print(" > Criterion load ignored because of:", error) | |
if use_cuda: | |
self.cuda() | |
if criterion is not None: | |
criterion = criterion.cuda() | |
if eval: | |
self.eval() | |
assert not self.training | |
if not eval: | |
return criterion, state["step"] | |
return criterion | |
class HifiDecoder(torch.nn.Module): | |
def __init__( | |
self, | |
input_sample_rate=22050, | |
output_sample_rate=24000, | |
output_hop_length=256, | |
ar_mel_length_compression=1024, | |
decoder_input_dim=1024, | |
resblock_type_decoder="1", | |
resblock_dilation_sizes_decoder=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
resblock_kernel_sizes_decoder=[3, 7, 11], | |
upsample_rates_decoder=[8, 8, 2, 2], | |
upsample_initial_channel_decoder=512, | |
upsample_kernel_sizes_decoder=[16, 16, 4, 4], | |
d_vector_dim=512, | |
cond_d_vector_in_each_upsampling_layer=True, | |
speaker_encoder_audio_config={ | |
"fft_size": 512, | |
"win_length": 400, | |
"hop_length": 160, | |
"sample_rate": 16000, | |
"preemphasis": 0.97, | |
"num_mels": 64, | |
}, | |
): | |
super().__init__() | |
self.input_sample_rate = input_sample_rate | |
self.output_sample_rate = output_sample_rate | |
self.output_hop_length = output_hop_length | |
self.ar_mel_length_compression = ar_mel_length_compression | |
self.speaker_encoder_audio_config = speaker_encoder_audio_config | |
self.waveform_decoder = HifiganGenerator( | |
decoder_input_dim, | |
1, | |
resblock_type_decoder, | |
resblock_dilation_sizes_decoder, | |
resblock_kernel_sizes_decoder, | |
upsample_kernel_sizes_decoder, | |
upsample_initial_channel_decoder, | |
upsample_rates_decoder, | |
inference_padding=0, | |
cond_channels=d_vector_dim, | |
conv_pre_weight_norm=False, | |
conv_post_weight_norm=False, | |
conv_post_bias=False, | |
cond_in_each_up_layer=cond_d_vector_in_each_upsampling_layer, | |
) | |
self.speaker_encoder = ResNetSpeakerEncoder( | |
input_dim=64, | |
proj_dim=512, | |
log_input=True, | |
use_torch_spec=True, | |
audio_config=speaker_encoder_audio_config, | |
) | |
def device(self): | |
return next(self.parameters()).device | |
def forward(self, latents, g=None): | |
""" | |
Args: | |
x (Tensor): feature input tensor (GPT latent). | |
g (Tensor): global conditioning input tensor. | |
Returns: | |
Tensor: output waveform. | |
Shapes: | |
x: [B, C, T] | |
Tensor: [B, 1, T] | |
""" | |
z = torch.nn.functional.interpolate( | |
latents.transpose(1, 2), | |
scale_factor=[self.ar_mel_length_compression / self.output_hop_length], | |
mode="linear", | |
).squeeze(1) | |
# upsample to the right sr | |
if self.output_sample_rate != self.input_sample_rate: | |
z = torch.nn.functional.interpolate( | |
z, | |
scale_factor=[self.output_sample_rate / self.input_sample_rate], | |
mode="linear", | |
).squeeze(0) | |
o = self.waveform_decoder(z, g=g) | |
return o | |
def inference(self, c, g): | |
""" | |
Args: | |
x (Tensor): feature input tensor (GPT latent). | |
g (Tensor): global conditioning input tensor. | |
Returns: | |
Tensor: output waveform. | |
Shapes: | |
x: [B, C, T] | |
Tensor: [B, 1, T] | |
""" | |
return self.forward(c, g=g) | |
def load_checkpoint(self, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) | |
# remove unused keys | |
state = state["model"] | |
states_keys = list(state.keys()) | |
for key in states_keys: | |
if "waveform_decoder." not in key and "speaker_encoder." not in key: | |
del state[key] | |
self.load_state_dict(state) | |
if eval: | |
self.eval() | |
assert not self.training | |
self.waveform_decoder.remove_weight_norm() | |