Voice-Clone-GPU1 / TTS /vocoder /configs /hifigan_config.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
5.99 kB
from dataclasses import dataclass, field
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig
@dataclass
class HifiganConfig(BaseGANVocoderConfig):
"""Defines parameters for FullBand MelGAN vocoder.
Example:
>>> from TTS.vocoder.configs import HifiganConfig
>>> config = HifiganConfig()
Args:
model (str):
Model name used for selecting the right model at initialization. Defaults to `hifigan`.
discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to
'hifigan_discriminator`.
generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is
considered as a generator too. Defaults to `hifigan_generator`.
generator_model_params (dict): Parameters of the generator model. Defaults to
`
{
"upsample_factors": [8, 8, 2, 2],
"upsample_kernel_sizes": [16, 16, 4, 4],
"upsample_initial_channel": 512,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"resblock_type": "1",
}
`
batch_size (int):
Batch size used at training. Larger values use more memory. Defaults to 16.
seq_len (int):
Audio segment length used at training. Larger values use more memory. Defaults to 8192.
pad_short (int):
Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0.
use_noise_augment (bool):
enable / disable random noise added to the input waveform. The noise is added after computing the
features. Defaults to True.
use_cache (bool):
enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is
not large enough. Defaults to True.
use_stft_loss (bool):
enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True.
use_subband_stft (bool):
enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True.
use_mse_gan_loss (bool):
enable / disable using Mean Squeare Error GAN loss. Defaults to True.
use_hinge_gan_loss (bool):
enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models.
Defaults to False.
use_feat_match_loss (bool):
enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True.
use_l1_spec_loss (bool):
enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False.
stft_loss_params (dict):
STFT loss parameters. Default to
`{
"n_ffts": [1024, 2048, 512],
"hop_lengths": [120, 240, 50],
"win_lengths": [600, 1200, 240]
}`
l1_spec_loss_params (dict):
L1 spectrogram loss parameters. Default to
`{
"use_mel": True,
"sample_rate": 22050,
"n_fft": 1024,
"hop_length": 256,
"win_length": 1024,
"n_mels": 80,
"mel_fmin": 0.0,
"mel_fmax": None,
}`
stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total
model loss. Defaults to 0.5.
subband_stft_loss_weight (float):
Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
mse_G_loss_weight (float):
MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5.
hinge_G_loss_weight (float):
Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
feat_match_loss_weight (float):
Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108.
l1_spec_loss_weight (float):
L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
"""
model: str = "hifigan"
# model specific params
discriminator_model: str = "hifigan_discriminator"
generator_model: str = "hifigan_generator"
generator_model_params: dict = field(
default_factory=lambda: {
"upsample_factors": [8, 8, 2, 2],
"upsample_kernel_sizes": [16, 16, 4, 4],
"upsample_initial_channel": 512,
"resblock_kernel_sizes": [3, 7, 11],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"resblock_type": "1",
}
)
# LOSS PARAMETERS - overrides
use_stft_loss: bool = False
use_subband_stft_loss: bool = False
use_mse_gan_loss: bool = True
use_hinge_gan_loss: bool = False
use_feat_match_loss: bool = True # requires MelGAN Discriminators (MelGAN and HifiGAN)
use_l1_spec_loss: bool = True
# loss weights - overrides
stft_loss_weight: float = 0
subband_stft_loss_weight: float = 0
mse_G_loss_weight: float = 1
hinge_G_loss_weight: float = 0
feat_match_loss_weight: float = 108
l1_spec_loss_weight: float = 45
l1_spec_loss_params: dict = field(
default_factory=lambda: {
"use_mel": True,
"sample_rate": 22050,
"n_fft": 1024,
"hop_length": 256,
"win_length": 1024,
"n_mels": 80,
"mel_fmin": 0.0,
"mel_fmax": None,
}
)
# optimizer parameters
lr: float = 1e-4
wd: float = 1e-6