Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) | |
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Based on fairseq code bases | |
# https://github.com/pytorch/fairseq | |
# -------------------------------------------------------- | |
import logging | |
import math | |
from typing import List, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import LayerNorm | |
from TTS.vc.modules.freevc.wavlm.modules import ( | |
Fp32GroupNorm, | |
Fp32LayerNorm, | |
GLU_Linear, | |
GradMultiply, | |
MultiheadAttention, | |
SamePad, | |
TransposeLast, | |
get_activation_fn, | |
init_bert_params, | |
) | |
logger = logging.getLogger(__name__) | |
def compute_mask_indices( | |
shape: Tuple[int, int], | |
padding_mask: Optional[torch.Tensor], | |
mask_prob: float, | |
mask_length: int, | |
mask_type: str = "static", | |
mask_other: float = 0.0, | |
min_masks: int = 0, | |
no_overlap: bool = False, | |
min_space: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape | |
Args: | |
shape: the the shape for which to compute masks. | |
should be of size 2 where first element is batch size and 2nd is timesteps | |
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements | |
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by | |
number of timesteps divided by length of mask span to mask approximately this percentage of all elements. | |
however due to overlaps, the actual number will be smaller (unless no_overlap is True) | |
mask_type: how to compute mask lengths | |
static = fixed size | |
uniform = sample from uniform distribution [mask_other, mask_length*2] | |
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element | |
poisson = sample from possion distribution with lambda = mask length | |
min_masks: minimum number of masked spans | |
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping | |
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans | |
""" | |
bsz, all_sz = shape | |
mask = np.full((bsz, all_sz), False) | |
all_num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * all_sz / float(mask_length) | |
+ np.random.rand() | |
) | |
all_num_mask = max(min_masks, all_num_mask) | |
mask_idcs = [] | |
for i in range(bsz): | |
if padding_mask is not None: | |
sz = all_sz - padding_mask[i].long().sum().item() | |
num_mask = int( | |
# add a random number for probabilistic rounding | |
mask_prob * sz / float(mask_length) | |
+ np.random.rand() | |
) | |
num_mask = max(min_masks, num_mask) | |
else: | |
sz = all_sz | |
num_mask = all_num_mask | |
if mask_type == "static": | |
lengths = np.full(num_mask, mask_length) | |
elif mask_type == "uniform": | |
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) | |
elif mask_type == "normal": | |
lengths = np.random.normal(mask_length, mask_other, size=num_mask) | |
lengths = [max(1, int(round(x))) for x in lengths] | |
elif mask_type == "poisson": | |
lengths = np.random.poisson(mask_length, size=num_mask) | |
lengths = [int(round(x)) for x in lengths] | |
else: | |
raise Exception("unknown mask selection " + mask_type) | |
if sum(lengths) == 0: | |
lengths[0] = min(mask_length, sz - 1) | |
if no_overlap: | |
mask_idc = [] | |
def arrange(s, e, length, keep_length): | |
span_start = np.random.randint(s, e - length) | |
mask_idc.extend(span_start + i for i in range(length)) | |
new_parts = [] | |
if span_start - s - min_space >= keep_length: | |
new_parts.append((s, span_start - min_space + 1)) | |
if e - span_start - keep_length - min_space > keep_length: | |
new_parts.append((span_start + length + min_space, e)) | |
return new_parts | |
parts = [(0, sz)] | |
min_length = min(lengths) | |
for length in sorted(lengths, reverse=True): | |
lens = np.fromiter( | |
(e - s if e - s >= length + min_space else 0 for s, e in parts), | |
np.int, | |
) | |
l_sum = np.sum(lens) | |
if l_sum == 0: | |
break | |
probs = lens / np.sum(lens) | |
c = np.random.choice(len(parts), p=probs) | |
s, e = parts.pop(c) | |
parts.extend(arrange(s, e, length, min_length)) | |
mask_idc = np.asarray(mask_idc) | |
else: | |
min_len = min(lengths) | |
if sz - min_len <= num_mask: | |
min_len = sz - num_mask - 1 | |
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) | |
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
min_len = min([len(m) for m in mask_idcs]) | |
for i, mask_idc in enumerate(mask_idcs): | |
if len(mask_idc) > min_len: | |
mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
mask[i, mask_idc] = True | |
return mask | |
class WavLMConfig: | |
def __init__(self, cfg=None): | |
self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True) | |
self.encoder_layers: int = 12 # num encoder layers in the transformer | |
self.encoder_embed_dim: int = 768 # encoder embedding dimension | |
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN | |
self.encoder_attention_heads: int = 12 # num encoder attention heads | |
self.activation_fn: str = "gelu" # activation function to use | |
self.layer_norm_first: bool = False # apply layernorm first in the transformer | |
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...] | |
self.conv_bias: bool = False # include bias in conv encoder | |
self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this | |
self.normalize: bool = False # normalize input to have 0 mean and unit variance during training | |
# dropouts | |
self.dropout: float = 0.1 # dropout probability for the transformer | |
self.attention_dropout: float = 0.1 # dropout probability for attention weights | |
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN | |
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer | |
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr) | |
self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr) | |
# masking | |
self.mask_length: int = 10 # mask length | |
self.mask_prob: float = 0.65 # probability of replacing a token with mask | |
self.mask_selection: str = "static" # how to choose mask length | |
self.mask_other: float = ( | |
0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh | |
) | |
self.no_mask_overlap: bool = False # whether to allow masks to overlap | |
self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled) | |
# channel masking | |
self.mask_channel_length: int = 10 # length of the mask for features (channels) | |
self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0 | |
self.mask_channel_selection: str = "static" # how to choose mask length for channel masking | |
self.mask_channel_other: float = ( | |
0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices | |
) | |
self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap | |
self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled) | |
# positional embeddings | |
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings | |
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding | |
# relative position embedding | |
self.relative_position_embedding: bool = False # apply relative position embedding | |
self.num_buckets: int = 320 # number of buckets for relative position embedding | |
self.max_distance: int = 1280 # maximum distance for relative position embedding | |
self.gru_rel_pos: bool = False # apply gated relative position embedding | |
if cfg is not None: | |
self.update(cfg) | |
def update(self, cfg: dict): | |
self.__dict__.update(cfg) | |
class WavLM(nn.Module): | |
def __init__( | |
self, | |
cfg: WavLMConfig, | |
) -> None: | |
super().__init__() | |
logger.info(f"WavLM Config: {cfg.__dict__}") | |
self.cfg = cfg | |
feature_enc_layers = eval(cfg.conv_feature_layers) | |
self.embed = feature_enc_layers[-1][0] | |
self.feature_extractor = ConvFeatureExtractionModel( | |
conv_layers=feature_enc_layers, | |
dropout=0.0, | |
mode=cfg.extractor_mode, | |
conv_bias=cfg.conv_bias, | |
) | |
self.post_extract_proj = ( | |
nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None | |
) | |
self.mask_prob = cfg.mask_prob | |
self.mask_selection = cfg.mask_selection | |
self.mask_other = cfg.mask_other | |
self.mask_length = cfg.mask_length | |
self.no_mask_overlap = cfg.no_mask_overlap | |
self.mask_min_space = cfg.mask_min_space | |
self.mask_channel_prob = cfg.mask_channel_prob | |
self.mask_channel_selection = cfg.mask_channel_selection | |
self.mask_channel_other = cfg.mask_channel_other | |
self.mask_channel_length = cfg.mask_channel_length | |
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap | |
self.mask_channel_min_space = cfg.mask_channel_min_space | |
self.dropout_input = nn.Dropout(cfg.dropout_input) | |
self.dropout_features = nn.Dropout(cfg.dropout_features) | |
self.feature_grad_mult = cfg.feature_grad_mult | |
self.mask_emb = nn.Parameter(torch.FloatTensor(cfg.encoder_embed_dim).uniform_()) | |
self.encoder = TransformerEncoder(cfg) | |
self.layer_norm = LayerNorm(self.embed) | |
def apply_mask(self, x, padding_mask): | |
B, T, C = x.shape | |
if self.mask_prob > 0: | |
mask_indices = compute_mask_indices( | |
(B, T), | |
padding_mask, | |
self.mask_prob, | |
self.mask_length, | |
self.mask_selection, | |
self.mask_other, | |
min_masks=2, | |
no_overlap=self.no_mask_overlap, | |
min_space=self.mask_min_space, | |
) | |
mask_indices = torch.from_numpy(mask_indices).to(x.device) | |
x[mask_indices] = self.mask_emb | |
else: | |
mask_indices = None | |
if self.mask_channel_prob > 0: | |
mask_channel_indices = compute_mask_indices( | |
(B, C), | |
None, | |
self.mask_channel_prob, | |
self.mask_channel_length, | |
self.mask_channel_selection, | |
self.mask_channel_other, | |
no_overlap=self.no_mask_channel_overlap, | |
min_space=self.mask_channel_min_space, | |
) | |
mask_channel_indices = torch.from_numpy(mask_channel_indices).to(x.device).unsqueeze(1).expand(-1, T, -1) | |
x[mask_channel_indices] = 0 | |
return x, mask_indices | |
def forward_padding_mask( | |
self, | |
features: torch.Tensor, | |
padding_mask: torch.Tensor, | |
) -> torch.Tensor: | |
extra = padding_mask.size(1) % features.size(1) | |
if extra > 0: | |
padding_mask = padding_mask[:, :-extra] | |
padding_mask = padding_mask.view(padding_mask.size(0), features.size(1), -1) | |
# padding_mask = padding_mask.all(-1) | |
padding_mask = padding_mask.any(-1) | |
return padding_mask | |
def extract_features( | |
self, | |
source: torch.Tensor, | |
padding_mask: Optional[torch.Tensor] = None, | |
mask: bool = False, | |
ret_conv: bool = False, | |
output_layer: Optional[int] = None, | |
ret_layer_results: bool = False, | |
): | |
if self.feature_grad_mult > 0: | |
features = self.feature_extractor(source) | |
if self.feature_grad_mult != 1.0: | |
features = GradMultiply.apply(features, self.feature_grad_mult) | |
else: | |
with torch.no_grad(): | |
features = self.feature_extractor(source) | |
features = features.transpose(1, 2) | |
features = self.layer_norm(features) | |
if padding_mask is not None: | |
padding_mask = self.forward_padding_mask(features, padding_mask) | |
if self.post_extract_proj is not None: | |
features = self.post_extract_proj(features) | |
features = self.dropout_input(features) | |
if mask: | |
x, mask_indices = self.apply_mask(features, padding_mask) | |
else: | |
x = features | |
# feature: (B, T, D), float | |
# target: (B, T), long | |
# x: (B, T, D), float | |
# padding_mask: (B, T), bool | |
# mask_indices: (B, T), bool | |
x, layer_results = self.encoder( | |
x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 | |
) | |
res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results} | |
feature = res["features"] if ret_conv else res["x"] | |
if ret_layer_results: | |
feature = (feature, res["layer_results"]) | |
return feature, res["padding_mask"] | |
class ConvFeatureExtractionModel(nn.Module): | |
def __init__( | |
self, | |
conv_layers: List[Tuple[int, int, int]], | |
dropout: float = 0.0, | |
mode: str = "default", | |
conv_bias: bool = False, | |
conv_type: str = "default", | |
): | |
super().__init__() | |
assert mode in {"default", "layer_norm"} | |
def block( | |
n_in, | |
n_out, | |
k, | |
stride, | |
is_layer_norm=False, | |
is_group_norm=False, | |
conv_bias=False, | |
): | |
def make_conv(): | |
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias) | |
nn.init.kaiming_normal_(conv.weight) | |
return conv | |
assert (is_layer_norm and is_group_norm) == False, "layer norm and group norm are exclusive" | |
if is_layer_norm: | |
return nn.Sequential( | |
make_conv(), | |
nn.Dropout(p=dropout), | |
nn.Sequential( | |
TransposeLast(), | |
Fp32LayerNorm(dim, elementwise_affine=True), | |
TransposeLast(), | |
), | |
nn.GELU(), | |
) | |
elif is_group_norm: | |
return nn.Sequential( | |
make_conv(), | |
nn.Dropout(p=dropout), | |
Fp32GroupNorm(dim, dim, affine=True), | |
nn.GELU(), | |
) | |
else: | |
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU()) | |
self.conv_type = conv_type | |
if self.conv_type == "default": | |
in_d = 1 | |
self.conv_layers = nn.ModuleList() | |
for i, cl in enumerate(conv_layers): | |
assert len(cl) == 3, "invalid conv definition: " + str(cl) | |
(dim, k, stride) = cl | |
self.conv_layers.append( | |
block( | |
in_d, | |
dim, | |
k, | |
stride, | |
is_layer_norm=mode == "layer_norm", | |
is_group_norm=mode == "default" and i == 0, | |
conv_bias=conv_bias, | |
) | |
) | |
in_d = dim | |
elif self.conv_type == "conv2d": | |
in_d = 1 | |
self.conv_layers = nn.ModuleList() | |
for i, cl in enumerate(conv_layers): | |
assert len(cl) == 3 | |
(dim, k, stride) = cl | |
self.conv_layers.append(torch.nn.Conv2d(in_d, dim, k, stride)) | |
self.conv_layers.append(torch.nn.ReLU()) | |
in_d = dim | |
elif self.conv_type == "custom": | |
in_d = 1 | |
idim = 80 | |
self.conv_layers = nn.ModuleList() | |
for i, cl in enumerate(conv_layers): | |
assert len(cl) == 3 | |
(dim, k, stride) = cl | |
self.conv_layers.append(torch.nn.Conv2d(in_d, dim, k, stride, padding=1)) | |
self.conv_layers.append(torch.nn.LayerNorm([dim, idim])) | |
self.conv_layers.append(torch.nn.ReLU()) | |
in_d = dim | |
if (i + 1) % 2 == 0: | |
self.conv_layers.append(torch.nn.MaxPool2d(2, stride=2, ceil_mode=True)) | |
idim = int(math.ceil(idim / 2)) | |
else: | |
pass | |
def forward(self, x, mask=None): | |
# BxT -> BxCxT | |
x = x.unsqueeze(1) | |
if self.conv_type == "custom": | |
for conv in self.conv_layers: | |
if isinstance(conv, nn.LayerNorm): | |
x = x.transpose(1, 2) | |
x = conv(x).transpose(1, 2) | |
else: | |
x = conv(x) | |
x = x.transpose(2, 3).contiguous() | |
x = x.view(x.size(0), -1, x.size(-1)) | |
else: | |
for conv in self.conv_layers: | |
x = conv(x) | |
if self.conv_type == "conv2d": | |
b, c, t, f = x.size() | |
x = x.transpose(2, 3).contiguous().view(b, c * f, t) | |
return x | |
class TransformerEncoder(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.dropout = args.dropout | |
self.embedding_dim = args.encoder_embed_dim | |
self.pos_conv = nn.Conv1d( | |
self.embedding_dim, | |
self.embedding_dim, | |
kernel_size=args.conv_pos, | |
padding=args.conv_pos // 2, | |
groups=args.conv_pos_groups, | |
) | |
dropout = 0 | |
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim)) | |
nn.init.normal_(self.pos_conv.weight, mean=0, std=std) | |
nn.init.constant_(self.pos_conv.bias, 0) | |
self.pos_conv = nn.utils.parametrizations.weight_norm(self.pos_conv, name="weight", dim=2) | |
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU()) | |
if hasattr(args, "relative_position_embedding"): | |
self.relative_position_embedding = args.relative_position_embedding | |
self.num_buckets = args.num_buckets | |
self.max_distance = args.max_distance | |
else: | |
self.relative_position_embedding = False | |
self.num_buckets = 0 | |
self.max_distance = 0 | |
self.layers = nn.ModuleList( | |
[ | |
TransformerSentenceEncoderLayer( | |
embedding_dim=self.embedding_dim, | |
ffn_embedding_dim=args.encoder_ffn_embed_dim, | |
num_attention_heads=args.encoder_attention_heads, | |
dropout=self.dropout, | |
attention_dropout=args.attention_dropout, | |
activation_dropout=args.activation_dropout, | |
activation_fn=args.activation_fn, | |
layer_norm_first=args.layer_norm_first, | |
has_relative_attention_bias=(self.relative_position_embedding and i == 0), | |
num_buckets=self.num_buckets, | |
max_distance=self.max_distance, | |
gru_rel_pos=args.gru_rel_pos, | |
) | |
for i in range(args.encoder_layers) | |
] | |
) | |
self.layer_norm_first = args.layer_norm_first | |
self.layer_norm = LayerNorm(self.embedding_dim) | |
self.layerdrop = args.encoder_layerdrop | |
self.apply(init_bert_params) | |
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None): | |
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer) | |
if self.layer_norm_first and layer is None: | |
x = self.layer_norm(x) | |
return x, layer_results | |
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None): | |
if padding_mask is not None: | |
x[padding_mask] = 0 | |
x_conv = self.pos_conv(x.transpose(1, 2)) | |
x_conv = x_conv.transpose(1, 2) | |
x += x_conv | |
if not self.layer_norm_first: | |
x = self.layer_norm(x) | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
layer_results = [] | |
z = None | |
if tgt_layer is not None: | |
layer_results.append((x, z)) | |
r = None | |
pos_bias = None | |
for i, layer in enumerate(self.layers): | |
dropout_probability = np.random.random() | |
if not self.training or (dropout_probability > self.layerdrop): | |
x, z, pos_bias = layer( | |
x, | |
self_attn_padding_mask=padding_mask, | |
need_weights=False, | |
self_attn_mask=streaming_mask, | |
pos_bias=pos_bias, | |
) | |
if tgt_layer is not None: | |
layer_results.append((x, z)) | |
if i == tgt_layer: | |
r = x | |
break | |
if r is not None: | |
x = r | |
# T x B x C -> B x T x C | |
x = x.transpose(0, 1) | |
return x, layer_results | |
class TransformerSentenceEncoderLayer(nn.Module): | |
""" | |
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained | |
models. | |
""" | |
def __init__( | |
self, | |
embedding_dim: float = 768, | |
ffn_embedding_dim: float = 3072, | |
num_attention_heads: float = 8, | |
dropout: float = 0.1, | |
attention_dropout: float = 0.1, | |
activation_dropout: float = 0.1, | |
activation_fn: str = "relu", | |
layer_norm_first: bool = False, | |
has_relative_attention_bias: bool = False, | |
num_buckets: int = 0, | |
max_distance: int = 0, | |
rescale_init: bool = False, | |
gru_rel_pos: bool = False, | |
) -> None: | |
super().__init__() | |
# Initialize parameters | |
self.embedding_dim = embedding_dim | |
self.dropout = dropout | |
self.activation_dropout = activation_dropout | |
# Initialize blocks | |
self.activation_name = activation_fn | |
self.activation_fn = get_activation_fn(activation_fn) | |
self.self_attn = MultiheadAttention( | |
self.embedding_dim, | |
num_attention_heads, | |
dropout=attention_dropout, | |
self_attention=True, | |
has_relative_attention_bias=has_relative_attention_bias, | |
num_buckets=num_buckets, | |
max_distance=max_distance, | |
rescale_init=rescale_init, | |
gru_rel_pos=gru_rel_pos, | |
) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(self.activation_dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.layer_norm_first = layer_norm_first | |
# layer norm associated with the self attention layer | |
self.self_attn_layer_norm = LayerNorm(self.embedding_dim) | |
if self.activation_name == "glu": | |
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish") | |
else: | |
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim) | |
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim) | |
# layer norm associated with the position wise feed-forward NN | |
self.final_layer_norm = LayerNorm(self.embedding_dim) | |
def forward( | |
self, | |
x: torch.Tensor, | |
self_attn_mask: torch.Tensor = None, | |
self_attn_padding_mask: torch.Tensor = None, | |
need_weights: bool = False, | |
pos_bias=None, | |
): | |
""" | |
LayerNorm is applied either before or after the self-attention/ffn | |
modules similar to the original Transformer imlementation. | |
""" | |
residual = x | |
if self.layer_norm_first: | |
x = self.self_attn_layer_norm(x) | |
x, attn, pos_bias = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
need_weights=False, | |
attn_mask=self_attn_mask, | |
position_bias=pos_bias, | |
) | |
x = self.dropout1(x) | |
x = residual + x | |
residual = x | |
x = self.final_layer_norm(x) | |
if self.activation_name == "glu": | |
x = self.fc1(x) | |
else: | |
x = self.activation_fn(self.fc1(x)) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
x = self.dropout3(x) | |
x = residual + x | |
else: | |
x, attn, pos_bias = self.self_attn( | |
query=x, | |
key=x, | |
value=x, | |
key_padding_mask=self_attn_padding_mask, | |
need_weights=need_weights, | |
attn_mask=self_attn_mask, | |
position_bias=pos_bias, | |
) | |
x = self.dropout1(x) | |
x = residual + x | |
x = self.self_attn_layer_norm(x) | |
residual = x | |
if self.activation_name == "glu": | |
x = self.fc1(x) | |
else: | |
x = self.activation_fn(self.fc1(x)) | |
x = self.dropout2(x) | |
x = self.fc2(x) | |
x = self.dropout3(x) | |
x = residual + x | |
x = self.final_layer_norm(x) | |
return x, attn, pos_bias | |