Spaces:
Running
Running
File size: 25,677 Bytes
f11b057 29be9e3 f11b057 f45efd6 f11b057 f45efd6 f11b057 29be9e3 f11b057 c8e4be5 f11b057 29be9e3 f11b057 a90ed79 f11b057 c8e4be5 404b92c 6035aa5 404b92c c8e4be5 404b92c f11b057 404b92c f11b057 5a33a55 f11b057 bb5f655 f45efd6 f11b057 3219cef 5a33a55 bedf86a 5a33a55 bedf86a 5a33a55 f11b057 5a33a55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
from functools import reduce
import json
import os
import re
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from tqdm.autonotebook import tqdm
from utils.model_size import get_model_parameters_memory
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API
MODEL_CACHE = {}
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"]
TASKS = list(TASKS_CONFIG.keys())
PRETTY_NAMES = {
"InstructionRetrieval": "Retrieval w/Instructions",
"PairClassification": "Pair Classification",
"BitextMining": "Bitext Mining",
}
TASK_TO_METRIC = {k: [v["metric"]] for k, v in TASKS_CONFIG.items()}
# Add legacy metric names
TASK_TO_METRIC["STS"].append("cos_sim_spearman")
TASK_TO_METRIC["STS"].append("cosine_spearman")
TASK_TO_METRIC["Summarization"].append("cos_sim_spearman")
TASK_TO_METRIC["Summarization"].append("cosine_spearman")
TASK_TO_METRIC["PairClassification"].append("cos_sim_ap")
TASK_TO_METRIC["PairClassification"].append("cosine_ap")
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)}
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)}
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)}
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)}
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)}
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)}
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()}
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)}
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
CROSS_ENCODERS = MODEL_META["cross_encoders"]
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]]
INSTRUCT_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("uses_instruct", False)}
NOINSTRUCT_MODELS = {k for k,v in MODEL_META["model_meta"].items() if not v.get("uses_instruct", False)}
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
for board_config in BOARDS_CONFIG.values():
for task_category, task_list in board_config["tasks"].items():
TASK_TO_TASK_TYPE[task_category].extend(task_list)
## Don't cache this because we want to re-compute every time
# model_infos_path = "model_infos.json"
MODEL_INFOS = {}
# if os.path.exists(model_infos_path):
# with open(model_infos_path) as f:
# MODEL_INFOS = json.load(f)
def add_rank(df):
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
df.sort_values("Average", ascending=False, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
# Fill NaN after averaging
df.fillna("", inplace=True)
return df
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return (
f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name.split("/")[-1]}</a>'
)
def add_lang(examples):
if not(examples["eval_language"]) or (examples["eval_language"] == "default"):
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
else:
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
return examples
def norm(names): return set([name.split(" ")[0] for name in names])
def add_task(examples):
# Could be added to the dataset loading script instead
task_name = examples["mteb_dataset_name"]
task_type = None
for task_category, task_list in TASK_TO_TASK_TYPE.items():
if task_name in norm(task_list):
task_type = task_category
break
if task_type is not None:
examples["mteb_task"] = task_type
else:
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
examples["mteb_task"] = "Unknown"
return examples
def filter_metric_external(x, task, metrics):
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
if x['mteb_dataset_name'] in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval']:
return x["mteb_task"] == task and x['metric'] == 'ndcg_at_1'
else:
return x["mteb_task"] == task and x["metric"] in metrics
def filter_metric_fetched(name, metric, expected_metrics):
# This is a hack for the passkey and needle retrieval test, which reports ndcg_at_1 (i.e. accuracy), rather than the ndcg_at_10 that is commonly used for retrieval tasks.
return metric == 'ndcg_at_1' if name in ['LEMBNeedleRetrieval', 'LEMBPasskeyRetrieval'] else metric in expected_metrics
def get_dim_seq_size(model):
filenames = [sib.rfilename for sib in model.siblings]
dim, seq = "", ""
for filename in filenames:
if re.match("\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
break
for filename in filenames:
if re.match("\d+_Dense/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.modelId, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
if dim == "" or seq == "":
raise Exception(f"Could not find dim or seq for model {model.modelId}")
# Get model file size without downloading. Parameters in million parameters and memory in GB
parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory
def get_external_model_results():
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
with open("EXTERNAL_MODEL_RESULTS.json") as f:
EXTERNAL_MODEL_RESULTS = json.load(f)
# Update with models not contained
models_to_run = []
for model in EXTERNAL_MODELS:
if model not in EXTERNAL_MODEL_RESULTS:
models_to_run.append(model)
EXTERNAL_MODEL_RESULTS[model] = {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()}
## only if we want to re-calculate all instead of using the cache... it's likely they haven't changed
## but if your model results have changed, delete it from the "EXTERNAL_MODEL_RESULTS.json" file
else:
EXTERNAL_MODEL_RESULTS = {model: {k: {v[0]: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
models_to_run = EXTERNAL_MODELS
pbar = tqdm(models_to_run, desc="Fetching external model results")
for model in pbar:
pbar.set_description(f"Fetching external model results for {model!r}")
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True, download_mode='force_redownload', verification_mode="no_checks")
ds = ds.map(add_lang)
ds = ds.map(add_task)
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))}
for task, metrics in TASK_TO_METRIC.items():
ds_dict = ds.filter(lambda x: filter_metric_external(x, task, metrics))["test"].to_dict()
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
# metrics[0] is the main name for this metric; other names in the list are legacy for backward-compat
EXTERNAL_MODEL_RESULTS[model][task][metrics[0]].append({**base_dict, **ds_dict})
# Save & cache EXTERNAL_MODEL_RESULTS
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
json.dump(EXTERNAL_MODEL_RESULTS, f, indent=4)
return EXTERNAL_MODEL_RESULTS
def download_or_use_cache(modelId):
global MODEL_CACHE
if modelId in MODEL_CACHE:
return MODEL_CACHE[modelId]
try:
readme_path = hf_hub_download(modelId, filename="README.md", etag_timeout=30)
except Exception:
print(f"ERROR: Could not fetch metadata for {modelId}, trying again")
readme_path = hf_hub_download(modelId, filename="README.md", etag_timeout=30)
meta = metadata_load(readme_path)
MODEL_CACHE[modelId] = meta
return meta
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True):
global MODEL_INFOS
with open("EXTERNAL_MODEL_RESULTS.json", "r") as f:
external_model_results = json.load(f)
api = API
models = list(api.list_models(filter="mteb"))
# Legacy names changes; Also fetch the old results & merge later
if ('MLSUMClusteringP2P (fr)' in datasets):
datasets.append('MLSUMClusteringP2P')
if ('MLSUMClusteringS2S (fr)' in datasets):
datasets.append('MLSUMClusteringS2S')
if ('PawsXPairClassification (fr)' in datasets):
datasets.append('PawsX (fr)')
# Initialize list to models that we cannot fetch metadata from
df_list = []
for model in external_model_results:
results_list = []
for task in tasks:
# Not all models have InstructionRetrieval, other new tasks
if task not in external_model_results[model]: continue
results_list += external_model_results[model][task][task_to_metric[task][0]]
if len(datasets) > 0:
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
elif langs:
# Would be cleaner to rely on an extra language column instead
langs_format = [f"({lang})" for lang in langs]
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
else:
res = {k: v for d in results_list for k, v in d.items()}
# Model & at least one result
if len(res) > 1:
if add_emb_dim:
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
df_list.append(res)
pbar = tqdm(models, desc="Fetching model metadata")
for model in pbar:
if model.modelId in MODELS_TO_SKIP: continue
pbar.set_description(f"Fetching {model.modelId!r} metadata")
meta = download_or_use_cache(model.modelId)
MODEL_INFOS[model.modelId] = {
"metadata": meta
}
if "model-index" not in meta:
continue
# meta['model-index'][0]["results"] is list of elements like:
# {
# "task": {"type": "Classification"},
# "dataset": {
# "type": "mteb/amazon_massive_intent",
# "name": "MTEB MassiveIntentClassification (nb)",
# "config": "nb",
# "split": "test",
# },
# "metrics": [
# {"type": "accuracy", "value": 39.81506388702084},
# {"type": "f1", "value": 38.809586587791664},
# ],
# },
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
if len(datasets) > 0:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
elif langs:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
else:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
try:
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if filter_metric_fetched(res["dataset"]["name"].replace("MTEB ", ""), score["type"], task_to_metric.get(res["task"]["type"]))][0]} for res in task_results]
except Exception as e:
print("ERROR", model.modelId, e)
continue
out = {k: v for d in out for k, v in d.items()}
out["Model"] = make_clickable_model(model.modelId)
# Model & at least one result
if len(out) > 1:
if add_emb_dim:
# The except clause triggers on gated repos, we can use external metadata for those
try:
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
except:
name_without_org = model.modelId.split("/")[-1]
# EXTERNAL_MODEL_TO_SIZE[name_without_org] refers to millions of parameters, so for memory usage
# we multiply by 1e6 to get just the number of parameters, then by 4 to get the number of bytes
# given fp32 precision (4 bytes per float), then divide by 1024**3 to get the number of GB
MODEL_INFOS[model.modelId]["dim_seq_size"] = (
EXTERNAL_MODEL_TO_DIM.get(name_without_org, ""),
EXTERNAL_MODEL_TO_SEQLEN.get(name_without_org, ""),
EXTERNAL_MODEL_TO_SIZE.get(name_without_org, ""),
round(EXTERNAL_MODEL_TO_SIZE[name_without_org] * 1e6 * 4 / 1024**3, 2) if name_without_org in EXTERNAL_MODEL_TO_SIZE else "",
)
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
df_list.append(out)
model_siblings = model.siblings or []
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model_siblings}:
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
# # Save & cache MODEL_INFOS
# with open("model_infos.json", "w") as f:
# json.dump(MODEL_INFOS, f)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
cols = sorted(list(df.columns))
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]
if len(datasets) > 0:
# Update legacy column names to be merged with newer ones
# Update 'MLSUMClusteringP2P (fr)' with values from 'MLSUMClusteringP2P'
if ('MLSUMClusteringP2P (fr)' in datasets) and ('MLSUMClusteringP2P' in cols):
df['MLSUMClusteringP2P (fr)'] = df['MLSUMClusteringP2P (fr)'].fillna(df['MLSUMClusteringP2P'])
datasets.remove('MLSUMClusteringP2P')
if ('MLSUMClusteringS2S (fr)' in datasets) and ('MLSUMClusteringS2S' in cols):
df['MLSUMClusteringS2S (fr)'] = df['MLSUMClusteringS2S (fr)'].fillna(df['MLSUMClusteringS2S'])
datasets.remove('MLSUMClusteringS2S')
if ('PawsXPairClassification (fr)' in datasets) and ('PawsX (fr)' in cols):
# for the first bit no model has it, hence no column for it. We can remove this in a month or so
if "PawsXPairClassification (fr)" not in cols:
df['PawsXPairClassification (fr)'] = df['PawsX (fr)']
else:
df['PawsXPairClassification (fr)'] = df['PawsXPairClassification (fr)'].fillna(df['PawsX (fr)'])
# make all the columns the same
datasets.remove('PawsX (fr)')
cols.remove('PawsX (fr)')
df.drop(columns=['PawsX (fr)'], inplace=True)
cols.append('PawsXPairClassification (fr)')
# Filter invalid columns
cols = [col for col in cols if col in base_columns + datasets]
i = 0
for column in base_columns:
if column in cols:
cols.insert(i, cols.pop(cols.index(column)))
i += 1
df = df[cols]
if rank:
df = add_rank(df)
if fillna:
df.fillna("", inplace=True)
return df
# Get dict with a task list for each task category
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
def get_mteb_average(task_dict: dict):
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
DATA_OVERALL = get_mteb_data(
tasks=list(task_dict.keys()),
datasets=all_tasks,
fillna=False,
add_emb_dim=True,
rank=False,
)
# Debugging:
# DATA_OVERALL.to_csv("overall.csv")
DATA_OVERALL.insert(1, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False))
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
DATA_OVERALL.insert(i+2, f"{task_category} Average ({len(task_category_list)} datasets)", DATA_OVERALL[task_category_list].mean(axis=1, skipna=False))
DATA_OVERALL.sort_values(f"Average ({len(all_tasks)} datasets)", ascending=False, inplace=True)
# Start ranking from 1
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
DATA_OVERALL = DATA_OVERALL.round(2)
DATA_TASKS = {}
for task_category, task_category_list in task_dict.items():
DATA_TASKS[task_category] = add_rank(DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list])
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL.fillna("", inplace=True)
data_overall_rows = ["Rank", "Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens", f"Average ({len(all_tasks)} datasets)"]
for task_category, task_category_list in task_dict.items():
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)")
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL, DATA_TASKS
def refresh_leaderboard():
"""
The main code to refresh and calculate results for the leaderboard. It does this by fetching the results from the
external models and the models in the leaderboard, then calculating the average scores for each task category.
Returns:
dict: A dictionary containing the overall leaderboard and the task category leaderboards.
"""
# get external model results and cache them
# NOTE: if your model results have changed, use this function to refresh them (see inside for details)
get_external_model_results()
boards_data = {}
all_data_tasks = []
pbar_tasks = tqdm(BOARDS_CONFIG.items(), desc="Fetching leaderboard results for ???", total=len(BOARDS_CONFIG), leave=True)
for board, board_config in pbar_tasks:
# To add only a single new board, you can uncomment the below to be faster
if board != "rar-b": continue
boards_data[board] = {
"data_overall": None,
"data_tasks": {}
}
pbar_tasks.set_description(f"Fetching leaderboard results for {board!r}")
pbar_tasks.refresh()
if board_config["has_overall"]:
data_overall, data_tasks = get_mteb_average(board_config["tasks"])
boards_data[board]["data_overall"] = data_overall
boards_data[board]["data_tasks"] = data_tasks
all_data_tasks.extend(data_tasks.values())
else:
for task_category, task_category_list in board_config["tasks"].items():
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list)
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
boards_data[board]["data_tasks"][task_category] = data_task_category
all_data_tasks.append(data_task_category)
return all_data_tasks, boards_data
def write_out_results(item, item_name: str):
"""
Due to their complex structure, let's recursively create subfolders until we reach the end
of the item and then save the DFs as jsonl files
Args:
item (dict): The item to save
item_name (str): The name of the item
Returns:
None
"""
main_folder = item_name
if isinstance(item, list):
for i, v in enumerate(item):
write_out_results(v, os.path.join(main_folder, str(i)))
elif isinstance(item, dict):
for key, value in item.items():
if isinstance(value, dict):
write_out_results(value, os.path.join(main_folder, key))
elif isinstance(value, list):
for i, v in enumerate(value):
write_out_results(v, os.path.join(main_folder, key + str(i)))
else:
write_out_results(value, os.path.join(main_folder, key))
elif isinstance(item, pd.DataFrame):
print(f"Saving {main_folder} to {main_folder}/default.jsonl")
os.makedirs(main_folder, exist_ok=True)
item.reset_index().to_json(f"{main_folder}/default.jsonl", orient="records", lines=True)
elif isinstance(item, str):
print(f"Saving {main_folder} to {main_folder}/default.txt")
os.makedirs(main_folder, exist_ok=True)
with open(f"{main_folder}/default.txt", "w") as f:
f.write(item)
elif item is None:
# write out an empty file
print(f"Saving {main_folder} to {main_folder}/default.txt")
os.makedirs(main_folder, exist_ok=True)
with open(f"{main_folder}/default.txt", "w") as f:
f.write("")
else:
raise Exception(f"Unknown type {type(item)}")
def load_results(data_path):
"""
Do the reverse of `write_out_results` to reconstruct the item
Args:
data_path (str): The path to the data to load
Returns:
dict: The loaded data
"""
if os.path.isdir(data_path):
# if the folder just has numbers from 0 to N, load as a list
all_files_in_dir = list(os.listdir(data_path))
if set(all_files_in_dir) == set([str(i) for i in range(len(all_files_in_dir))]):
### the list case
return [load_results(os.path.join(data_path, str(i))) for i in range(len(os.listdir(data_path)))]
else:
if len(all_files_in_dir) == 1:
file_name = all_files_in_dir[0]
if file_name == "default.jsonl":
return load_results(os.path.join(data_path, file_name))
else: ### the dict case
return {file_name: load_results(os.path.join(data_path, file_name))}
else:
return {file_name: load_results(os.path.join(data_path, file_name)) for file_name in all_files_in_dir}
elif data_path.endswith(".jsonl"):
df = pd.read_json(data_path, orient="records", lines=True)
if "index" in df.columns:
df = df.set_index("index")
return df
else:
with open(data_path, "r") as f:
data = f.read()
if data == "":
return None
else:
return data
if __name__ == "__main__":
print(f"Refreshing leaderboard statistics...")
all_data_tasks, boards_data = refresh_leaderboard()
print(f"Done calculating, saving...")
# save them so that the leaderboard can use them. They're quite complex though
# but we can't use pickle files because of git-lfs.
write_out_results(all_data_tasks, "all_data_tasks")
write_out_results(boards_data, "boards_data")
# to load them use
# all_data_tasks = load_results("all_data_tasks")
# boards_data = load_results("boards_data")
print("Done saving results!") |