thushalya
commited on
Commit
•
39953cb
1
Parent(s):
73dcfcf
Add personality bar graph
Browse files
app.py
CHANGED
@@ -176,6 +176,7 @@ def personality_detection(text, threshold=0.05, endpoint= 1.0):
|
|
176 |
# # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
|
177 |
# result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
|
178 |
# probabilities
|
|
|
179 |
return [probabilities[0][0].detach().numpy()
|
180 |
,probabilities[0][1].detach().numpy()
|
181 |
,probabilities[0][2].detach().numpy()
|
@@ -377,7 +378,14 @@ def greet(tweet):
|
|
377 |
"Emotions": ["Anger", "Anticipation", "Disgust", "Fear", "Joy", "Love", "Optimism", "Pessimism", "Sadness","Surprise","Trust"],
|
378 |
"Values": preemotion_list,
|
379 |
}
|
380 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
# with gr.Blocks() as bar_plot:
|
382 |
# bar_plot.load(outputs= gr.BarPlot(
|
383 |
# simple,
|
@@ -405,7 +413,7 @@ def greet(tweet):
|
|
405 |
label = "Hate"
|
406 |
|
407 |
|
408 |
-
return label,str(prediction_value)+"%",str(1-prediction_value)+"%",simple
|
409 |
|
410 |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
411 |
demo = gr.Interface(
|
@@ -422,7 +430,17 @@ demo = gr.Interface(
|
|
422 |
y="Values",
|
423 |
title="Emotion Analysis",
|
424 |
tooltip=["Emotions", "Values"],
|
425 |
-
y_lim=[0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
426 |
)
|
427 |
],
|
428 |
examples=[
|
|
|
176 |
# # result = {label_names[i]: f"{predictions[i]*100:.0f}%" for i in range(len(label_names))}
|
177 |
# result = {label_names[i]: f"{probabilities}%" for i in range(len(label_names))}
|
178 |
# probabilities
|
179 |
+
print(probabilities)
|
180 |
return [probabilities[0][0].detach().numpy()
|
181 |
,probabilities[0][1].detach().numpy()
|
182 |
,probabilities[0][2].detach().numpy()
|
|
|
378 |
"Emotions": ["Anger", "Anticipation", "Disgust", "Fear", "Joy", "Love", "Optimism", "Pessimism", "Sadness","Surprise","Trust"],
|
379 |
"Values": preemotion_list,
|
380 |
}
|
381 |
+
)
|
382 |
+
personality_values = pd.DataFrame(
|
383 |
+
{
|
384 |
+
"Personality": ['Agreeableness', 'Conscientiousness', 'Extraversion', 'Neuroticism', 'Openness'],
|
385 |
+
"Values": personality_list,
|
386 |
+
}
|
387 |
+
)
|
388 |
+
|
389 |
# with gr.Blocks() as bar_plot:
|
390 |
# bar_plot.load(outputs= gr.BarPlot(
|
391 |
# simple,
|
|
|
413 |
label = "Hate"
|
414 |
|
415 |
|
416 |
+
return label,str(prediction_value)+"%",str(1-prediction_value)+"%",simple,personality_values
|
417 |
|
418 |
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
419 |
demo = gr.Interface(
|
|
|
430 |
y="Values",
|
431 |
title="Emotion Analysis",
|
432 |
tooltip=["Emotions", "Values"],
|
433 |
+
y_lim=[0, 1],
|
434 |
+
label="Emotion bar graph"
|
435 |
+
),
|
436 |
+
gr.BarPlot(
|
437 |
+
personality_values,
|
438 |
+
x="Personality",
|
439 |
+
y="Values",
|
440 |
+
title="Personality Analysis",
|
441 |
+
tooltip=["Personality", "Values"],
|
442 |
+
y_lim=[0, 1],
|
443 |
+
label="Personality bar graph"
|
444 |
)
|
445 |
],
|
446 |
examples=[
|