Thziin commited on
Commit
7dc9f2d
1 Parent(s): 09ab405

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -53
app.py CHANGED
@@ -1,64 +1,44 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
2
 
3
+ # Load the model and tokenizer from Hugging Face
4
+ model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"
 
 
5
 
6
+ model = AutoModelForCausalLM.from_pretrained(
7
+ model_name,
8
+ torch_dtype="auto", # Automatically selects the appropriate dtype
9
+ device_map="auto" # Distributes the model across available devices
10
+ )
11
 
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ # Define the prompt for the model
15
+ prompt = "write a quick sort algorithm."
16
 
17
+ # Prepare the messages to pass to the model
18
+ messages = [
19
+ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
20
+ {"role": "user", "content": prompt}
21
+ ]
 
 
 
22
 
23
+ # Generate the input for the model using the tokenizer
24
+ text = tokenizer.apply_chat_template(
25
+ messages,
26
+ tokenize=False,
27
+ add_generation_prompt=True
28
+ )
29
 
30
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
31
 
32
+ # Generate the response from the model
33
+ generated_ids = model.generate(
34
+ **model_inputs,
35
+ max_new_tokens=512 # Limit the length of the generated text
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  )
37
 
38
+ # Decode and print the result
39
+ generated_ids = [
40
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
41
+ ]
42
 
43
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
44
+ print(response)