Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,44 @@
|
|
1 |
-
import
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
2 |
|
3 |
+
# Load the model and tokenizer from Hugging Face
|
4 |
+
model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"
|
|
|
|
|
5 |
|
6 |
+
model = AutoModelForCausalLM.from_pretrained(
|
7 |
+
model_name,
|
8 |
+
torch_dtype="auto", # Automatically selects the appropriate dtype
|
9 |
+
device_map="auto" # Distributes the model across available devices
|
10 |
+
)
|
11 |
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Define the prompt for the model
|
15 |
+
prompt = "write a quick sort algorithm."
|
16 |
|
17 |
+
# Prepare the messages to pass to the model
|
18 |
+
messages = [
|
19 |
+
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
20 |
+
{"role": "user", "content": prompt}
|
21 |
+
]
|
|
|
|
|
|
|
22 |
|
23 |
+
# Generate the input for the model using the tokenizer
|
24 |
+
text = tokenizer.apply_chat_template(
|
25 |
+
messages,
|
26 |
+
tokenize=False,
|
27 |
+
add_generation_prompt=True
|
28 |
+
)
|
29 |
|
30 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
31 |
|
32 |
+
# Generate the response from the model
|
33 |
+
generated_ids = model.generate(
|
34 |
+
**model_inputs,
|
35 |
+
max_new_tokens=512 # Limit the length of the generated text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
+
# Decode and print the result
|
39 |
+
generated_ids = [
|
40 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
41 |
+
]
|
42 |
|
43 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
44 |
+
print(response)
|