File size: 1,274 Bytes
6b6b539 9463592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
# Função para carregar o modelo e executar inferência com parâmetros personalizados
def predict(input_text, temperature, max_length, top_p, top_k):
# Carregue o modelo
model = gr.load("models/meta-llama/Llama-3.3-70B-Instruct")
# Use os parâmetros passados para configurar o modelo
return model(input_text, temperature=temperature, max_length=max_length, top_p=top_p, top_k=top_k)
# Interface Gradio
with gr.Blocks() as demo:
gr.Markdown("# Modelo Llama 3.3 - Ajuste de Parâmetros")
with gr.Row():
input_text = gr.Textbox(label="Texto de entrada", placeholder="Digite seu texto aqui")
with gr.Row():
temperature = gr.Slider(0, 1, value=0.7, label="Temperature")
max_length = gr.Slider(1, 2048, value=512, step=1, label="Comprimento Máximo")
top_p = gr.Slider(0, 1, value=0.9, label="Top-p (nucleus sampling)")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
with gr.Row():
output = gr.Textbox(label="Saída do Modelo")
with gr.Row():
submit_btn = gr.Button("Executar")
submit_btn.click(
predict,
inputs=[input_text, temperature, max_length, top_p, top_k],
outputs=output,
)
demo.launch() |