Spaces:
Runtime error
Runtime error
File size: 1,882 Bytes
854fe03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import numpy as np
import string
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import tensorflow as tf
from tensorflow import keras
from keras import layers
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import joblib
nltk.download('stopwords')
nltk.download('omw-1.4')
nltk.download('wordnet')
nltk.download('punkt')
tokenizer, model = joblib.load("lstm_model.pkl")
def preprocess(text, tokenizer):
lemmatizer = WordNetLemmatizer()
vocab = set()
stop_words = set(stopwords.words('english'))
tokens = word_tokenize(text)
tokens = [word for word in tokens if word.lower() not in stop_words and word not in string.punctuation]
tokens = [lemmatizer.lemmatize(word.lower()) for word in tokens]
vocab.update(tokens)
preprocessed_text = ' '.join(tokens)
X = tokenizer.texts_to_sequences(preprocessed_text)
max_len = max(len(y) for y in X)
X = pad_sequences(X, maxlen=max_len)
return X
def predict(text):
X = preprocess(text, tokenizer)
pred = model.predict(X)
probabilities = np.mean(pred, axis=0)
final_class = np.argmax(probabilities)
if final_class == 0:
prediction = "The string is classified as hate speech."
else:
prediction = "The string is classified as normal speech."
return {"prediction": prediction, "probability": probabilities.tolist()}
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter text here..."),
outputs=[gr.outputs.Textbox(label="Prediction"), gr.outputs.Textbox(label="Probabilities")],
title="Hate Speech Classifier",
description="A classifier to detect hate speech in a given text.",
)
if __name__ == "__main__":
iface.launch() |