Spaces:
Sleeping
Sleeping
File size: 3,835 Bytes
672d17d c64c2a3 672d17d c64c2a3 672d17d c64c2a3 672d17d 3dae197 62ec359 672d17d 62ec359 672d17d 62ec359 672d17d c64c2a3 672d17d c64c2a3 672d17d c64c2a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import llama_cpp
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
llm = None
llm_model = None
# Dropdown for Model Selection
model_dropdown = gr.Dropdown(
[
'qwen2-0_5b-instruct-q4_k_m.gguf',
'qwen2_500m.gguf',
'mistrallite.Q4_K_M.gguf',
],
value="qwen2-0_5b-instruct-q4_k_m.gguf",
label="Model"
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
selected_model, # This is now a parameter received from the interface
):
chat_template = MessagesFormatterType.GEMMA_2
global llm
global llm_model
# Update the model if it has changed
if llm is None or llm_model != selected_model:
llm = Llama(
model_path=f"models/{selected_model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model = selected_model
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
description = """<p align="center">Defaults to Qwen 500M</p>
"""
# Create the Gradio interface
with gr.Blocks() as demo: # Create a Gradio Blocks context
# Model selection dropdown above the chat
model_dropdown.render()
# Main chat interface
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
model_dropdown # Pass the dropdown directly
],
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
title="Chat with Qwen 2 and friends using llama.cpp",
description=description,
)
demo.queue().launch() |