from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch from transformers import AutoTokenizer from peft import PeftModel, PeftConfig config = PeftConfig.from_pretrained("TohidA/LlamaInstructMona") model = AutoModelForCausalLM.from_pretrained("mlabonne/llama-2-7b-miniguanaco") model = PeftModel.from_pretrained(model, "TohidA/LlamaInstructMona") if torch.cuda.is_available(): model = model.cuda() tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) def prompt(instruction, input=''): if input=='': return f"Below is an instruction that describes a task. Write a response that appropriately completes the request. \n\n### Instruction:\n{instruction} \n\n### Response:\n" return f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. \n\n### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id def instruct(instruction, input='', temperature=0.7, top_p=0.95, top_k=4, max_new_tokens=128, do_sample=False, penalty_alpha=0.6, repetition_penalty=1., stop="\n\n"): input_ids = tokenizer(prompt(instruction, input).strip(), return_tensors='pt').input_ids.cuda() with torch.cuda.amp.autocast(): outputs = model.generate( input_ids=input_ids, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, do_sample=do_sample, repetition_penalty=repetition_penalty ) if stop=="": return tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split("### Response:")[1].strip(), prompt(instruction, input) return tokenizer.decode(outputs.sequences[0], skip_special_tokens=True).split("### Response:")[1].strip().split(stop)[0].strip(), prompt(instruction, input) import locale locale.getpreferredencoding = lambda: "UTF-8" import gradio as gr input_text = gr.Textbox(label="Input") instruction_text = gr.Textbox(label="Instruction") temperature = gr.Slider(label="Temperature", minimum=0, maximum=1, value=0.7, step=0.05) top_p = gr.Slider(label="Top-P", minimum=0, maximum=1, value=0.95, step=0.01) top_k = gr.Slider(label="Top-K", minimum=0, maximum=128, value=40, step=1) max_new_tokens = gr.Slider(label="Tokens", minimum=1, maximum=256, value=64) do_sample = gr.Checkbox(label="Do Sample", value=True) penalty_alpha = gr.Slider(minimum=0, maximum=1, value=0.5) repetition_penalty = gr.Slider(minimum=1., maximum=2., value=1., step=0.1) stop = gr.Textbox(label="Stopping Criteria", value="") output_prompt = gr.Textbox(label="Prompt") output_text = gr.Textbox(label="Output") description = """ The [TohidA/InstructLlamaMONA-withMONAdataset](https://hf.co/TohidA/LlamaInstructMona). A Llama chat 7B model finetuned on an [instruction dataset](https://huggingface.co/mlabonne/llama-2-7b-miniguanaco), then finetuned with the RL/PPO using a [Reward model](https://huggingface.co/TohidA/MONAreward) which is a BERT classifier trained on [Monda dataset](https://huggingface.co/datasets/TohidA/MONA), with [low rank adaptation](https://arxiv.org/abs/2106.09685) for a single epoch. """ gr.Interface(fn=instruct, inputs=[instruction_text, input_text, temperature, top_p, top_k, max_new_tokens, do_sample, penalty_alpha, repetition_penalty, stop], outputs=[output_text, output_prompt], title="InstructLlamaMONA 7B Gradio Demo", description=description).launch( debug=True, share=True )