Tomas1234 commited on
Commit
fe045aa
·
1 Parent(s): 59086ad

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -92
app.py DELETED
@@ -1,92 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- from PIL import Image
4
- import requests
5
-
6
- import hopsworks
7
- import joblib
8
- import pandas as pd
9
-
10
- project = hopsworks.login()
11
- fs = project.get_feature_store()
12
-
13
-
14
- mr = project.get_model_registry()
15
- model = mr.get_model("titanic_modal", version=1)
16
- model_dir = model.download()
17
- model = joblib.load(model_dir + "/titanic_model.pkl")
18
-
19
-
20
- def titanic(pclass,age,sibsp,parch,fare,sex,embarked):
21
- input_list = []
22
- input_list.append(pclass)
23
- input_list.append(age)
24
- input_list.append(sibsp)
25
- input_list.append(parch)
26
- input_list.append(fare)
27
- if sex == "male":
28
- input_list.append(0)
29
- input_list.append(1)
30
- elif sex == "female":
31
- input_list.append(1)
32
- input_list.append(0)
33
-
34
- if embarked == "C":
35
- input_list.append(1)
36
- input_list.append(0)
37
- input_list.append(0)
38
- input_list.append(0)
39
- elif embarked == "Q":
40
- input_list.append(0)
41
- input_list.append(1)
42
- input_list.append(0)
43
- input_list.append(0)
44
- elif embarked == "S":
45
- input_list.append(0)
46
- input_list.append(0)
47
- input_list.append(1)
48
- input_list.append(0)
49
- elif embarked == "Unknown":
50
- input_list.append(0)
51
- input_list.append(0)
52
- input_list.append(0)
53
- input_list.append(1)
54
-
55
- # input_df = pd.DataFrame(data=input_list, columns = ['Pclass', 'Age', 'SibSp', 'Parch',
56
- # 'Fare', 'Sex_female','Sex_male',
57
- # 'Embarked_C', 'Embarked_Q', 'Embarked_S',
58
- # 'Embarked_Unknown'])
59
- # 'res' is a list of predictions returned as the label.
60
- res = model.predict(np.asarray(input_list).reshape(1, -1))
61
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
62
- # the first element.
63
- if res[0] == 1:
64
- res_str = "survivor"
65
- else:
66
- res_str = "victim"
67
- passenger_url = "https://raw.githubusercontent.com/daniel-rdt/serverless_ml_titanic_dr/main/assets/" + res_str + ".png"
68
- img = Image.open(requests.get(passenger_url, stream=True).raw)
69
- return img
70
- # if res[0] == 1:
71
- # return "The passenger is predicted to be a survivor."
72
- # else:
73
- # return "The passenger is predicted to be a victim."
74
-
75
- demo = gr.Interface(
76
- fn=titanic,
77
- title="Titanic Passenger Predictive Analytics",
78
- description="Experiment with passenger data to predict whether the passenger is a survivor or not.",
79
- allow_flagging="never",
80
- inputs=[
81
- gr.inputs.Number(default=2, label="Passenger class (choose from either 1, 2 or 3)"),
82
- gr.inputs.Number(default=30, label="Age in full years (if child younger than 1 round up to 1)"),
83
- gr.inputs.Number(default=1, label="Number of siblings or spouses"),
84
- gr.inputs.Number(default=0, label="Number of parents or children"),
85
- gr.inputs.Number(default=100, label="Fare (cost between 0 and 513)"),
86
- gr.inputs.Textbox(default="male", label="Sex (choose from either male or female)"),
87
- gr.inputs.Textbox(default="Unknown", label="Embarked (choose from either C, Q, S or Unknown)"),
88
- ],
89
- # outputs=gr.outputs.Textbox())
90
- outputs=gr.Image(type="pil"))
91
-
92
- demo.launch()