import gradio as gr import numpy as np from PIL import Image import requests import hopsworks import joblib import pandas as pd project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=1) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def titanic(pclass,age,sibsp,parch,fare,sex,embarked): input_list = [] input_list.append(pclass) input_list.append(age) input_list.append(sibsp) input_list.append(parch) input_list.append(fare) if sex == "male": input_list.append(0) input_list.append(1) elif sex == "female": input_list.append(1) input_list.append(0) if embarked == "C": input_list.append(1) input_list.append(0) input_list.append(0) input_list.append(0) elif embarked == "Q": input_list.append(0) input_list.append(1) input_list.append(0) input_list.append(0) elif embarked == "S": input_list.append(0) input_list.append(0) input_list.append(1) input_list.append(0) elif embarked == "Unknown": input_list.append(0) input_list.append(0) input_list.append(0) input_list.append(1) # input_df = pd.DataFrame(data=input_list, columns = ['Pclass', 'Age', 'SibSp', 'Parch', # 'Fare', 'Sex_female','Sex_male', # 'Embarked_C', 'Embarked_Q', 'Embarked_S', # 'Embarked_Unknown']) # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. if res[0] == 1: res_str = "survivor" else: res_str = "victim" passenger_url = "https://raw.githubusercontent.com/daniel-rdt/serverless_ml_titanic_dr/main/assets/" + res_str + ".png" img = Image.open(requests.get(passenger_url, stream=True).raw) return img # if res[0] == 1: # return "The passenger is predicted to be a survivor." # else: # return "The passenger is predicted to be a victim." demo = gr.Interface( fn=titanic, title="Titanic Passenger Predictive Analytics", description="Experiment with passenger data to predict whether the passenger is a survivor or not.", allow_flagging="never", inputs=[ gr.inputs.Number(default=2, label="Passenger class (choose from either 1, 2 or 3)"), gr.inputs.Number(default=30, label="Age in full years (if child younger than 1 round up to 1)"), gr.inputs.Number(default=1, label="Number of siblings or spouses"), gr.inputs.Number(default=0, label="Number of parents or children"), gr.inputs.Number(default=100, label="Fare (cost between 0 and 513)"), gr.inputs.Textbox(default="male", label="Sex (choose from either male or female)"), gr.inputs.Textbox(default="Unknown", label="Embarked (choose from either C, Q, S or Unknown)"), ], # outputs=gr.outputs.Textbox()) outputs=gr.Image(type="pil")) demo.launch()