whisper-lt / app.py
Tomas1234's picture
Upload 2 files
f91fe4b
raw
history blame
461 Bytes
from transformers import pipeline
import gradio as gr
pipe = pipeline(model="Tomas1234/common_voice")
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Lithuanian",
description="Realtime demo for Lithuanian speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()