Tonic commited on
Commit
45e60c8
β€’
1 Parent(s): 2110cc1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer
4
+ from open_lm.utils.transformers.hf_config import OpenLMConfig
5
+ from open_lm.utils.transformers.hf_model import OpenLMforCausalLM
6
+
7
+ title = """# πŸ™‹πŸ»β€β™‚οΈ Welcome to Tonic's DCLM 1B"""
8
+
9
+
10
+ # Load the model and tokenizer
11
+ model_name = "TRI-ML/DCLM-1B-IT"
12
+
13
+ # Load the configuration, tokenizer, and model separately
14
+ config = OpenLMConfig.from_pretrained(model_name)
15
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
16
+ model = OpenLMforCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="cuda", config=config)
17
+
18
+ # Define the prompt format
19
+ def create_prompt(instruction):
20
+ PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'''
21
+ return PROMPT.format(instruction=instruction)
22
+
23
+ # Define the respond function for Gradio
24
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
25
+ # Create the prompt
26
+ prompt = create_prompt(message)
27
+
28
+ # Tokenize the input
29
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(torch.device('cuda'))
30
+
31
+ # Generate the response
32
+ output = model.generate(input_ids, max_length=max_tokens, top_p=top_p, do_sample=True, temperature=temperature)
33
+
34
+ # Decode the response
35
+ response = tokenizer.decode(output[0][len(input_ids[0]):])
36
+ response = response.split("<|endoftext|>")[0]
37
+
38
+ return response
39
+
40
+ # Create Gradio ChatInterface
41
+ demo = gr.ChatInterface(
42
+ gr.markdown(title),
43
+ # gr.markdown(description),
44
+ respond,
45
+ additional_inputs=[
46
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
47
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
48
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
49
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
50
+ ],
51
+ )
52
+
53
+ if __name__ == "__main__":
54
+ demo.launch()