import gradio as gr import torch from transformers import AutoTokenizer from open_lm.utils.transformers.hf_config import OpenLMConfig from open_lm.utils.transformers.hf_model import OpenLMforCausalLM title = """# 🙋🏻‍♂️ Welcome to Tonic's DCLM 1B""" # Load the model and tokenizer model_name = "TRI-ML/DCLM-1B-IT" # Load the configuration, tokenizer, and model separately config = OpenLMConfig.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model = OpenLMforCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="cuda", config=config) # Define the prompt format def create_prompt(instruction): PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:''' return PROMPT.format(instruction=instruction) # Define the respond function for Gradio def respond(message, history, system_message, max_tokens, temperature, top_p): # Create the prompt prompt = create_prompt(message) # Tokenize the input input_ids = tokenizer.encode(prompt, return_tensors="pt").to(torch.device('cuda')) # Generate the response output = model.generate(input_ids, max_length=max_tokens, top_p=top_p, do_sample=True, temperature=temperature) # Decode the response response = tokenizer.decode(output[0][len(input_ids[0]):]) response = response.split("<|endoftext|>")[0] return response # Create Gradio ChatInterface demo = gr.ChatInterface( gr.markdown(title), # gr.markdown(description), respond, additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") ], ) if __name__ == "__main__": demo.launch()