File size: 8,333 Bytes
0dfb412
f2019a4
21257a3
f2019a4
 
 
 
 
 
 
 
21257a3
31559f1
0dfb412
208476f
 
21257a3
cf17c33
21257a3
22b51ff
21257a3
cf17c33
21257a3
 
 
22b51ff
21257a3
 
 
0dfb412
21257a3
0dfb412
21257a3
 
 
0dfb412
 
bafe915
 
0dfb412
21257a3
 
 
0dfb412
 
 
 
 
 
bafe915
 
0dfb412
 
 
bafe915
 
 
 
0dfb412
 
 
 
 
 
 
bafe915
 
 
 
 
 
 
 
 
21257a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafe915
0dfb412
21257a3
bafe915
 
 
 
 
21257a3
bafe915
 
 
 
0dfb412
21257a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dfb412
 
 
21257a3
0dfb412
bafe915
0dfb412
21257a3
0dfb412
bafe915
21257a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bafe915
21257a3
 
0dfb412
21257a3
 
3481362
f2019a4
21257a3
 
 
 
 
 
7468778
0dfb412
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
from vllm import LLM, SamplingParams
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd
import difflib

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# OCR Correction Model
ocr_model_name = "PleIAs/OCRonos"
ocr_llm = LLM(ocr_model_name, max_model_len=8128)

# Editorial Segmentation Model
editorial_model = "PleIAs/Segmentext"
token_classifier = pipeline(
    "token-classification", model=editorial_model, aggregation_strategy="simple", device=device
)

tokenizer = AutoTokenizer.from_pretrained(editorial_model, model_max_length=512)

# CSS for formatting
css = """
<style>
.generation {
    margin-left: 2em;
    margin-right: 2em;
    font-size: 1.2em;
}
:target {
    background-color: #CCF3DF;
}
.source {
    float: left;
    max-width: 17%;
    margin-left: 2%;
}
.tooltip {
    position: relative;
    cursor: pointer;
    font-variant-position: super;
    color: #97999b;
}
.tooltip:hover::after {
    content: attr(data-text);
    position: absolute;
    left: 0;
    top: 120%;
    white-space: pre-wrap;
    width: 500px;
    max-width: 500px;
    z-index: 1;
    background-color: #f9f9f9;
    color: #000;
    border: 1px solid #ddd;
    border-radius: 5px;
    padding: 5px;
    display: block;
    box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.deleted {
    background-color: #ffcccb;
    text-decoration: line-through;
}
.inserted {
    background-color: #90EE90;
}
.manuscript {
    display: flex;
    margin-bottom: 10px;
    align-items: baseline;
}
.annotation {
    width: 15%;
    padding-right: 20px;
    color: grey !important;
    font-style: italic;
    text-align: right;
}
.content {
    width: 80%;
}
h2 {
    margin: 0;
    font-size: 1.5em;
}
.title-content h2 {
    font-weight: bold;
}
.bibliography-content {
    color: darkgreen !important;
    margin-top: -5px;
}
.paratext-content {
    color: #a4a4a4 !important;
    margin-top: -5px;
}
</style>
"""

# Helper functions
def generate_html_diff(old_text, new_text):
    d = difflib.Differ()
    diff = list(d.compare(old_text.split(), new_text.split()))
    html_diff = []
    for word in diff:
        if word.startswith(' '):
            html_diff.append(word[2:])
        elif word.startswith('+ '):
            html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
    return ' '.join(html_diff)

def preprocess_text(text):
    text = re.sub(r'<[^>]+>', '', text)
    text = re.sub(r'\n', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    return text.strip()

def split_text(text, max_tokens=500):
    parts = text.split("\n")
    chunks = []
    current_chunk = ""

    for part in parts:
        if current_chunk:
            temp_chunk = current_chunk + "\n" + part
        else:
            temp_chunk = part

        num_tokens = len(tokenizer.tokenize(temp_chunk))

        if num_tokens <= max_tokens:
            current_chunk = temp_chunk
        else:
            if current_chunk:
                chunks.append(current_chunk)
            current_chunk = part

    if current_chunk:
        chunks.append(current_chunk)

    if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
        long_text = chunks[0]
        chunks = []
        while len(tokenizer.tokenize(long_text)) > max_tokens:
            split_point = len(long_text) // 2
            while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
                split_point += 1
            if split_point >= len(long_text):
                split_point = len(long_text) - 1
            chunks.append(long_text[:split_point].strip())
            long_text = long_text[split_point:].strip()
        if long_text:
            chunks.append(long_text)

    return chunks

def transform_chunks(marianne_segmentation):
    marianne_segmentation = pd.DataFrame(marianne_segmentation)
    marianne_segmentation = marianne_segmentation[marianne_segmentation['entity_group'] != 'separator']
    marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).str.replace('¶', '\n', regex=False)
    marianne_segmentation['word'] = marianne_segmentation['word'].astype(str).apply(preprocess_text)
    marianne_segmentation = marianne_segmentation[marianne_segmentation['word'].notna() & (marianne_segmentation['word'] != '') & (marianne_segmentation['word'] != ' ')]

    html_output = []
    for _, row in marianne_segmentation.iterrows():
        entity_group = row['entity_group']
        result_entity = "[" + entity_group.capitalize() + "]"
        word = row['word']
        
        if entity_group == 'title':
            html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content title-content"><h2>{word}</h2></div></div>')
        elif entity_group == 'bibliography':
            html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content bibliography-content">{word}</div></div>')
        elif entity_group == 'paratext':
            html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content paratext-content">{word}</div></div>')
        else:
            html_output.append(f'<div class="manuscript"><div class="annotation">{result_entity}</div><div class="content">{word}</div></div>')

    final_html = '\n'.join(html_output)
    return final_html

# OCR Correction Class
class OCRCorrector:
    def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
        self.system_prompt = system_prompt

    def correct(self, user_message):
        sampling_params = SamplingParams(temperature=0.9, top_p=0.95, max_tokens=4000, presence_penalty=0, stop=["#END#"])
        detailed_prompt = f"### TEXT ###\n{user_message}\n\n### CORRECTION ###\n"
        prompts = [detailed_prompt]
        outputs = ocr_llm.generate(prompts, sampling_params, use_tqdm=False)
        generated_text = outputs[0].outputs[0].text
        html_diff = generate_html_diff(user_message, generated_text)
        return generated_text, html_diff

# Editorial Segmentation Class
class EditorialSegmenter:
    def segment(self, text):
        editorial_text = re.sub("\n", " ¶ ", text)
        num_tokens = len(tokenizer.tokenize(editorial_text))
        
        if num_tokens > 500:
            batch_prompts = split_text(editorial_text, max_tokens=500)
        else:
            batch_prompts = [editorial_text]
    
        out = token_classifier(batch_prompts)
        classified_list = []
        for classification in out:
            df = pd.DataFrame(classification)
            classified_list.append(df)
    
        classified_list = pd.concat(classified_list)
        out = transform_chunks(classified_list)
        return out

# Combined Processing Class
class TextProcessor:
    def __init__(self):
        self.ocr_corrector = OCRCorrector()
        self.editorial_segmenter = EditorialSegmenter()

    def process(self, user_message):
        # Step 1: OCR Correction
        corrected_text, html_diff = self.ocr_corrector.correct(user_message)
        
        # Step 2: Editorial Segmentation
        segmented_text = self.editorial_segmenter.segment(corrected_text)
        
        # Combine results
        ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
        editorial_result = f'<h2 style="text-align:center">Editorial Segmentation</h2>\n<div class="generation">{segmented_text}</div>'
        
        final_output = f"{css}{ocr_result}<br><br>{editorial_result}"
        return final_output

# Create the TextProcessor instance
text_processor = TextProcessor()

# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
    gr.HTML("""<h1 style="text-align:center">LM Document Processing</h1>""")
    text_input = gr.Textbox(label="Your text", type="text", lines=5)
    process_button = gr.Button("Process Text")
    text_output = gr.HTML(label="Processed text")
    process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])

if __name__ == "__main__":
    demo.queue().launch()