Spaces:
Sleeping
Sleeping
File size: 5,984 Bytes
d731e09 0dfb412 f2019a4 ffbf266 f2019a4 ffbf266 f2019a4 d55b86a ffbf266 31559f1 ffbf266 dfbcb2e dd838d3 ffbf266 eed441d 0dfb412 21257a3 eed441d 21257a3 bafe915 0dfb412 21257a3 bafe915 eed441d 0dfb412 21257a3 eed441d b6cc9e1 2814dfb ffbf266 dd838d3 dfbcb2e dd838d3 ffbf266 cc8b44c ffbf266 21257a3 0dfb412 21257a3 fa86caf bafe915 21257a3 08d035b 21257a3 ffbf266 21257a3 bafe915 cd9ce00 21257a3 0dfb412 21257a3 3481362 f2019a4 21257a3 cd9ce00 b100458 21257a3 7468778 0dfb412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import spaces
import transformers
import re
from transformers import AutoConfig, AutoTokenizer, AutoModel, AutoModelForCausalLM, pipeline
import torch
import gradio as gr
import json
import os
import shutil
import requests
import pandas as pd
import difflib
# OCR Correction Model
ocr_model_name = "PleIAs/OCRonos-Vintage"
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load pre-trained model and tokenizer
model_name = "PleIAs/OCRonos-Vintage"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
# CSS for formatting
css = """
<style>
.generation {
margin-left: 2em;
margin-right: 2em;
font-size: 1.2em;
}
:target {
background-color: #CCF3DF;
}
.source {
float: left;
max-width: 17%;
margin-left: 2%;
}
.tooltip {
position: relative;
cursor: pointer;
font-variant-position: super;
color: #97999b;
}
.tooltip:hover::after {
content: attr(data-text);
position: absolute;
left: 0;
top: 120%;
white-space: pre-wrap;
width: 500px;
max-width: 500px;
z-index: 1;
background-color: #f9f9f9;
color: #000;
border: 1px solid #ddd;
border-radius: 5px;
padding: 5px;
display: block;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.deleted {
background-color: #ffcccb;
text-decoration: line-through;
}
.inserted {
background-color: #90EE90;
}
.manuscript {
display: flex;
margin-bottom: 10px;
align-items: baseline;
}
.annotation {
width: 15%;
padding-right: 20px;
color: grey !important;
font-style: italic;
text-align: right;
}
.content {
width: 80%;
}
h2 {
margin: 0;
font-size: 1.5em;
}
.title-content h2 {
font-weight: bold;
}
.bibliography-content {
color: darkgreen !important;
margin-top: -5px;
}
.paratext-content {
color: #a4a4a4 !important;
margin-top: -5px;
}
</style>
"""
# Helper functions
def generate_html_diff(old_text, new_text):
d = difflib.Differ()
diff = list(d.compare(old_text.split(), new_text.split()))
html_diff = []
for word in diff:
if word.startswith(' '):
html_diff.append(word[2:])
elif word.startswith('+ '):
html_diff.append(f'<span style="background-color: #90EE90;">{word[2:]}</span>')
return ' '.join(html_diff)
def preprocess_text(text):
text = re.sub(r'<[^>]+>', '', text)
text = re.sub(r'\n', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def split_text(text, max_tokens=500):
parts = text.split("\n")
chunks = []
current_chunk = ""
for part in parts:
if current_chunk:
temp_chunk = current_chunk + "\n" + part
else:
temp_chunk = part
num_tokens = len(tokenizer.tokenize(temp_chunk))
if num_tokens <= max_tokens:
current_chunk = temp_chunk
else:
if current_chunk:
chunks.append(current_chunk)
current_chunk = part
if current_chunk:
chunks.append(current_chunk)
if len(chunks) == 1 and len(tokenizer.tokenize(chunks[0])) > max_tokens:
long_text = chunks[0]
chunks = []
while len(tokenizer.tokenize(long_text)) > max_tokens:
split_point = len(long_text) // 2
while split_point < len(long_text) and not re.match(r'\s', long_text[split_point]):
split_point += 1
if split_point >= len(long_text):
split_point = len(long_text) - 1
chunks.append(long_text[:split_point].strip())
long_text = long_text[split_point:].strip()
if long_text:
chunks.append(long_text)
return chunks
# Function to generate text
@spaces.GPU
def ocr_correction(prompt, max_new_tokens=500):
model.to(device)
prompt = f"""### Text ###\n{prompt}\n\n\n### Correction ###\n"""
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
# Generate text
output = model.generate(input_ids,
max_new_tokens=max_new_tokens,
pad_token_id=tokenizer.eos_token_id,
top_k=50,
num_return_sequences=1,
do_sample=True,
temperature=0.7
)
# Decode and return the generated text
result = tokenizer.decode(output[0], skip_special_tokens=True)
print(result)
result = result.split("### Correction ###")[1]
return result
# OCR Correction Class
class OCRCorrector:
def __init__(self, system_prompt="Le dialogue suivant est une conversation"):
self.system_prompt = system_prompt
def correct(self, user_message):
generated_text = ocr_correction(user_message)
html_diff = generate_html_diff(user_message, generated_text)
return generated_text, html_diff
# Combined Processing Class
class TextProcessor:
def __init__(self):
self.ocr_corrector = OCRCorrector()
@spaces.GPU(duration=120)
def process(self, user_message):
#OCR Correction
corrected_text, html_diff = self.ocr_corrector.correct(user_message)
# Combine results
ocr_result = f'<h2 style="text-align:center">OCR Correction</h2>\n<div class="generation">{html_diff}</div>'
final_output = f"{css}{ocr_result}"
return final_output
# Create the TextProcessor instance
text_processor = TextProcessor()
# Define the Gradio interface
with gr.Blocks(theme='JohnSmith9982/small_and_pretty') as demo:
gr.HTML("""<h1 style="text-align:center">Vintage OCR corrector</h1>""")
text_input = gr.Textbox(label="Your (bad?) text", type="text", lines=5)
process_button = gr.Button("Process Text")
text_output = gr.HTML(label="Processed text")
process_button.click(text_processor.process, inputs=text_input, outputs=[text_output])
if __name__ == "__main__":
demo.queue().launch() |