Spaces:
Sleeping
Sleeping
import re | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, AutoModel, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from vllm import LLM, SamplingParams | |
import torch | |
import gradio as gr | |
import json | |
import os | |
import shutil | |
import requests | |
import numpy as np | |
import pandas as pd | |
from threading import Thread | |
from FlagEmbedding import BGEM3FlagModel | |
from sklearn.metrics.pairwise import cosine_similarity | |
from transformers import AutoModelForSequenceClassification | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#Importing the embedding model | |
embedding_model = BGEM3FlagModel('BAAI/bge-m3', | |
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation | |
embeddings = np.load("embeddings_albert_tchap.npy") | |
embeddings_data = pd.read_json("embeddings_albert_tchap.json") | |
embeddings_text = embeddings_data["text_with_context"].tolist() | |
#Importing the classifier/router (deberta) | |
classifier_model = AutoModelForSequenceClassification.from_pretrained("AgentPublic/chatrag-deberta") | |
classifier_tokenizer = AutoTokenizer.from_pretrained("AgentPublic/chatrag-deberta") | |
#Importing the actual generative LLM (llama-based) | |
model_name = "Pclanglais/Tchap" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) | |
model = model.to('cuda:0') | |
system_prompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nTu es Albert, l'agent conversationnel des services publics qui peut décrire des documents de référence ou aider à des tâches de rédaction<|eot_id|>" | |
source_text = "Les sources utilisées par Albert-Tchap vont apparaître ici'" | |
#Function to guess whether we use the RAG or not. | |
def classification_chatrag(query): | |
print(query) | |
encoding = classifier_tokenizer(query, return_tensors="pt") | |
encoding = {k: v.to(classifier_model.device) for k,v in encoding.items()} | |
outputs = classifier_model(**encoding) | |
logits = outputs.logits | |
logits.shape | |
# apply sigmoid + threshold | |
sigmoid = torch.nn.Sigmoid() | |
probs = sigmoid(logits.squeeze().cpu()) | |
predictions = np.zeros(probs.shape) | |
# Extract the float value from the tensor | |
float_value = round(probs.item()*100) | |
print(float_value) | |
if float_value > 50: | |
status = True | |
print("We activate RAG") | |
else: | |
status = False | |
print("We remove RAG") | |
return status | |
#Vector search over the database | |
def vector_search(sentence_query): | |
query_embedding = embedding_model.encode(sentence_query, | |
batch_size=12, | |
max_length=256, # If you don't need such a long length, you can set a smaller value to speed up the encoding process. | |
)['dense_vecs'] | |
# Reshape the query embedding to fit the cosine_similarity function requirements | |
query_embedding_reshaped = query_embedding.reshape(1, -1) | |
# Compute cosine similarities | |
similarities = cosine_similarity(query_embedding_reshaped, embeddings) | |
# Find the index of the closest document (highest similarity) | |
closest_doc_index = np.argmax(similarities) | |
# Closest document's embedding | |
closest_doc_embedding = embeddings_text[closest_doc_index] | |
return closest_doc_embedding | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
global source_text | |
global assess_rag | |
#For now, we only query the vector database once, at the start. | |
if len(history) == 0: | |
assess_rag = classification_chatrag(message) | |
if assess_rag: | |
source_text = vector_search(message) | |
else: | |
source_text = "Albert-Tchap n'utilise pas de sources comme votre requête n'a pas l'air d'en recueillir." | |
history_transformer_format = history + [[message, ""]] | |
print(history_transformer_format) | |
stop = StopOnTokens() | |
messages = [] | |
id_message = 1 | |
total_message = len(history_transformer_format) | |
for item in history_transformer_format: | |
#Once we target the ongoing post we add the source. | |
if id_message == total_message: | |
if assess_rag: | |
question = "<|start_header_id|>user<|end_header_id|>\n\n"+ item[0] + "\n\n### Source ###\n" + source_text | |
else: | |
question = "<|start_header_id|>user<|end_header_id|>\n\n"+ item[0] | |
else: | |
question = "<|start_header_id|>user<|end_header_id|>\n\n"+ item[0] | |
answer = "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"+item[1] | |
result = "".join([question, answer]) | |
messages.append(result) | |
id_message = id_message + 1 | |
messages = "".join(messages) | |
print(messages) | |
messages = system_prompt + messages | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=1024, | |
do_sample=False, | |
top_p=0.95, | |
temperature=0.4, | |
stopping_criteria=StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
return messages, source_text | |
# Define the Gradio interface | |
title = "Tchap" | |
description = "Le chatbot du service public" | |
examples = [ | |
[ | |
"Qui peut bénéficier de l'AIP?", # user_message | |
0.7 # temperature | |
] | |
] | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
chat_box = gr.ChatInterface(fn=predict, inputs=[gr.Text(), gr.Dataframe()]) | |
source_display = gr.HTML() | |
chat_box.change(source_display.update) # Use the change event to update the HTML component | |
if __name__ == "__main__": | |
demo.queue().launch() |