StableMed_Chat / app.py
Tonic's picture
Update app.py
237d9d2
raw
history blame
1.99 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
base_model_id = "mistralai/Mistral-7B-v0.1"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load the fine-tuned model "Tonic/mistralmed"
model = AutoModelForCausalLM.from_pretrained("Tonic/mistralmed", quantization_config=bnb_config)
tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
class ChatBot:
def __init__(self):
self.history = []
def predict(self, input):
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
flat_history = [item for sublist in self.history for item in sublist]
flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0)
bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=2000, pad_token_id=tokenizer.eos_token_id)
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0])
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
bot = ChatBot()
title = "👋🏻Welcome to Tonic's EZ Chat🚀"
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on [Discord](https://discord.gg/fpEPNZGsbt) to build together."
examples = [["What is the boiling point of nitrogen"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs="text",
outputs="text",
theme="ParityError/Anime"
)
iface.launch()