from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") tokenizer.padding_side = 'left' model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") class ChatBot: def __init__(self): self.history = [] def predict(self, input): new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt") flat_history = [item for sublist in self.history for item in sublist] bot_input_ids = torch.cat([torch.tensor(flat_history), new_user_input_ids], dim=-1) if self.history else new_user_input_ids chat_history_ids = model.generate(bot_input_ids, max_length=2000, pad_token_id=tokenizer.eos_token_id) self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0]) response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return response bot = ChatBot() title = "👋🏻Welcome to Tonic's EZ Chat🚀" description = "You can use this Space to test out the current model (DialoGPT-medium) or duplicate this Space and use it for any other model on 🤗HuggingFace." examples = [["How are you?"]] iface = gr.Interface( fn=bot.predict, title=title, description=description, examples=examples, inputs="text", outputs="text", theme="ParityError/Anime" ) iface.launch()