Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import os
|
|
4 |
import json
|
5 |
import time
|
6 |
import transformers
|
|
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
hf_token = os.getenv("HF_AUTH_TOKEN")
|
@@ -156,21 +157,51 @@ def query_vectara(text):
|
|
156 |
else:
|
157 |
return f"Error: {response.status_code}"
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
hallucination_score = check_hallucination(olmo_output, vectara_summary)
|
164 |
-
return olmo_output, hallucination_score
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
iface = gr.Interface(
|
168 |
fn=evaluate_content,
|
169 |
inputs=[gr.Textbox(label="User Input")],
|
170 |
outputs=[
|
171 |
-
gr.Textbox(label="Vectara Summary"),
|
172 |
gr.Textbox(label="Vectara Sources", lines=10),
|
173 |
-
gr.Textbox(label="Generated Text"),
|
174 |
gr.Textbox(label="Hallucination Score")
|
175 |
],
|
176 |
live=False,
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import transformers
|
7 |
+
import re
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
|
10 |
hf_token = os.getenv("HF_AUTH_TOKEN")
|
|
|
157 |
else:
|
158 |
return f"Error: {response.status_code}"
|
159 |
|
160 |
+
def clean_text(text):
|
161 |
+
# Function to clean text using regex
|
162 |
+
cleaned_text = re.sub(r'[^\w\s]', '', text) # Remove special characters except spaces
|
163 |
+
return cleaned_text
|
|
|
|
|
164 |
|
165 |
+
def evaluate_content(user_input):
|
166 |
+
vectara_response = query_vectara(user_input)
|
167 |
+
vectara_response_json = json.loads(vectara_response)
|
168 |
+
|
169 |
+
summary = vectara_response_json.get("summary", "")
|
170 |
+
sources = vectara_response_json.get("sources", [])
|
171 |
+
|
172 |
+
# Clean summary text
|
173 |
+
summary_clean = clean_text(summary)
|
174 |
+
|
175 |
+
# Process sources to extract and clean necessary information
|
176 |
+
sources_info = ""
|
177 |
+
for source in sources:
|
178 |
+
title = source.get("title", "No title")
|
179 |
+
author = source.get("author", "No author")
|
180 |
+
page_number = source.get("page number", "N/A")
|
181 |
+
|
182 |
+
# Clean source info
|
183 |
+
title_clean = clean_text(title)
|
184 |
+
author_clean = clean_text(author)
|
185 |
+
|
186 |
+
sources_info += f"Title: {title_clean}, Author: {author_clean}, Page: {page_number}\n"
|
187 |
+
|
188 |
+
# Generate text based on the cleaned summary
|
189 |
+
olmo_output = generate_text(summary_clean)
|
190 |
+
olmo_output_clean = clean_text(olmo_output)
|
191 |
+
|
192 |
+
# Check hallucination based on the original output and summary
|
193 |
+
hallucination_score = check_hallucination(olmo_output, summary)
|
194 |
+
|
195 |
+
return summary_clean, sources_info, olmo_output_clean, hallucination_score
|
196 |
+
|
197 |
+
# Adjust the Gradio interface outputs to match the new structure
|
198 |
iface = gr.Interface(
|
199 |
fn=evaluate_content,
|
200 |
inputs=[gr.Textbox(label="User Input")],
|
201 |
outputs=[
|
202 |
+
gr.Textbox(label="Vectara Summary", lines=10),
|
203 |
gr.Textbox(label="Vectara Sources", lines=10),
|
204 |
+
gr.Textbox(label="Generated Text", lines=10),
|
205 |
gr.Textbox(label="Hallucination Score")
|
206 |
],
|
207 |
live=False,
|