tonic
commited on
Commit
•
fa0faa4
1
Parent(s):
fb8b6b0
Update app.py
Browse files
app.py
CHANGED
@@ -3,20 +3,31 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import os
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# Define the API parameters
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
raise ValueError("Please set the HF_AUTH_TOKEN environment variable.")
|
11 |
|
12 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
13 |
|
14 |
# Function to query the API
|
15 |
def query(payload):
|
16 |
-
response = requests.post(
|
17 |
return response.json()
|
18 |
|
19 |
-
|
|
|
20 |
def evaluate_hallucination(input1, input2):
|
21 |
# Combine the inputs
|
22 |
combined_input = f"{input1}. {input2}"
|
@@ -27,11 +38,117 @@ def evaluate_hallucination(input1, input2):
|
|
27 |
# Extract the score from the output
|
28 |
score = output[0][0]['score']
|
29 |
|
30 |
-
#
|
31 |
if score < 0.5:
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
else:
|
34 |
-
return "
|
35 |
|
36 |
# Create the Gradio interface
|
37 |
iface = gr.Interface(
|
|
|
3 |
import requests
|
4 |
import os
|
5 |
|
6 |
+
def check_hallucination(assertion, citation):
|
7 |
+
api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
|
8 |
+
header = {"Authorization": f"Bearer {hf_token}"}
|
9 |
+
payload = {"inputs": f"{assertion} [SEP] {citation}"}
|
10 |
+
|
11 |
+
response = requests.post(api_url, headers=header, json=payload, timeout=120)
|
12 |
+
output = response.json()
|
13 |
+
output = output[0][0]["score"]
|
14 |
+
|
15 |
+
return f"**hallucination score:** {output}"
|
16 |
+
|
17 |
+
|
18 |
# Define the API parameters
|
19 |
+
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
|
20 |
+
|
21 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
|
|
22 |
|
|
|
23 |
|
24 |
# Function to query the API
|
25 |
def query(payload):
|
26 |
+
response = requests.post(vapi_url, headers=headers, json=payload)
|
27 |
return response.json()
|
28 |
|
29 |
+
|
30 |
+
# Function to evaluate hallucination
|
31 |
def evaluate_hallucination(input1, input2):
|
32 |
# Combine the inputs
|
33 |
combined_input = f"{input1}. {input2}"
|
|
|
38 |
# Extract the score from the output
|
39 |
score = output[0][0]['score']
|
40 |
|
41 |
+
# Generate a label based on the score
|
42 |
if score < 0.5:
|
43 |
+
label = f"🔴 High risk. Score: {score:.2f}"
|
44 |
+
else:
|
45 |
+
label = f"🟢 Low risk. Score: {score:.2f}"
|
46 |
+
|
47 |
+
return label
|
48 |
+
|
49 |
+
def query_vectara(text):
|
50 |
+
user_message = text
|
51 |
+
|
52 |
+
# Read authentication parameters from the .env file
|
53 |
+
customer_id = os.getenv('CUSTOMER_ID')
|
54 |
+
corpus_id = os.getenv('CORPUS_ID')
|
55 |
+
api_key = os.getenv('API_KEY')
|
56 |
+
|
57 |
+
# Define the headers
|
58 |
+
api_key_header = {
|
59 |
+
"customer-id": customer_id,
|
60 |
+
"x-api-key": api_key
|
61 |
+
}
|
62 |
+
|
63 |
+
# Define the request body in the structure provided in the example
|
64 |
+
request_body = {
|
65 |
+
"query": [
|
66 |
+
{
|
67 |
+
"query": user_message,
|
68 |
+
"queryContext": "",
|
69 |
+
"start": 1,
|
70 |
+
"numResults": 25,
|
71 |
+
"contextConfig": {
|
72 |
+
"charsBefore": 0,
|
73 |
+
"charsAfter": 0,
|
74 |
+
"sentencesBefore": 2,
|
75 |
+
"sentencesAfter": 2,
|
76 |
+
"startTag": "%START_SNIPPET%",
|
77 |
+
"endTag": "%END_SNIPPET%",
|
78 |
+
},
|
79 |
+
"rerankingConfig": {
|
80 |
+
"rerankerId": 272725718,
|
81 |
+
"mmrConfig": {
|
82 |
+
"diversityBias": 0.35
|
83 |
+
}
|
84 |
+
},
|
85 |
+
"corpusKey": [
|
86 |
+
{
|
87 |
+
"customerId": customer_id,
|
88 |
+
"corpusId": corpus_id,
|
89 |
+
"semantics": 0,
|
90 |
+
"metadataFilter": "",
|
91 |
+
"lexicalInterpolationConfig": {
|
92 |
+
"lambda": 0
|
93 |
+
},
|
94 |
+
"dim": []
|
95 |
+
}
|
96 |
+
],
|
97 |
+
"summary": [
|
98 |
+
{
|
99 |
+
"maxSummarizedResults": 5,
|
100 |
+
"responseLang": "auto",
|
101 |
+
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
|
102 |
+
}
|
103 |
+
]
|
104 |
+
}
|
105 |
+
]
|
106 |
+
}
|
107 |
+
|
108 |
+
# Make the API request using Gradio
|
109 |
+
response = requests.post(
|
110 |
+
"https://api.vectara.io/v1/query",
|
111 |
+
json=request_body, # Use json to automatically serialize the request body
|
112 |
+
verify=True,
|
113 |
+
headers=api_key_header
|
114 |
+
)
|
115 |
+
|
116 |
+
if response.status_code == 200:
|
117 |
+
query_data = response.json()
|
118 |
+
if query_data:
|
119 |
+
sources_info = []
|
120 |
+
|
121 |
+
# Extract the summary.
|
122 |
+
summary = query_data['responseSet'][0]['summary'][0]['text']
|
123 |
+
|
124 |
+
# Iterate over all response sets
|
125 |
+
for response_set in query_data.get('responseSet', []):
|
126 |
+
# Extract sources
|
127 |
+
# Limit to top 5 sources.
|
128 |
+
for source in response_set.get('response', [])[:5]:
|
129 |
+
source_metadata = source.get('metadata', [])
|
130 |
+
source_info = {}
|
131 |
+
|
132 |
+
for metadata in source_metadata:
|
133 |
+
metadata_name = metadata.get('name', '')
|
134 |
+
metadata_value = metadata.get('value', '')
|
135 |
+
|
136 |
+
if metadata_name == 'title':
|
137 |
+
source_info['title'] = metadata_value
|
138 |
+
elif metadata_name == 'author':
|
139 |
+
source_info['author'] = metadata_value
|
140 |
+
elif metadata_name == 'pageNumber':
|
141 |
+
source_info['page number'] = metadata_value
|
142 |
+
|
143 |
+
if source_info:
|
144 |
+
sources_info.append(source_info)
|
145 |
+
|
146 |
+
result = {"summary": summary, "sources": sources_info}
|
147 |
+
return f"{json.dumps(result, indent=2)}"
|
148 |
+
else:
|
149 |
+
return "No data found in the response."
|
150 |
else:
|
151 |
+
return f"Error: {response.status_code}"
|
152 |
|
153 |
# Create the Gradio interface
|
154 |
iface = gr.Interface(
|