Spaces:
Runtime error
Runtime error
import spaces | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from transformers import AutoTokenizer, AutoModel | |
import gradio as gr | |
title = """ | |
# 👋🏻Welcome to 🙋🏻♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """ | |
description = """ | |
You can use this Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). e5mistral has a larger context window, a different prompting/return mechanism and generally better results than other embedding models. | |
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> | |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) | |
""" | |
# Define the function to pool the last token | |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: | |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) | |
if left_padding: | |
return last_hidden_states[:, -1] | |
else: | |
sequence_lengths = attention_mask.sum(dim=1) - 1 | |
batch_size = last_hidden_states.shape[0] | |
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] | |
# Define the function to get detailed instruct | |
def get_detailed_instruct(task_description: str, query: str) -> str: | |
return f'Instruct: {task_description}\nQuery: {query}' | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct') | |
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct') | |
def compute_embeddings(*input_texts): | |
# Check if GPU is available and use it; otherwise, use CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Move model to the chosen device | |
model.to(device) | |
max_length = 4096 | |
task = 'Given a web search query, retrieve relevant passages that answer the query' | |
# Prepare the input texts | |
processed_texts = [get_detailed_instruct(task, text) for text in input_texts] | |
# Tokenize the input texts | |
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True) | |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']] | |
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt') | |
# Get model outputs | |
outputs = model(**batch_dict) | |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) | |
# Normalize embeddings | |
embeddings = F.normalize(embeddings, p=2, dim=1) | |
return embeddings.detach().cpu().numpy() | |
def app_interface(): | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
# Input text boxes | |
input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)] | |
# Button to compute embeddings | |
compute_button = gr.Button("Compute Embeddings") | |
# Output display | |
output_display = gr.Dataframe(headers=["Embedding"], datatype=["numpy"]) | |
# Layout | |
with gr.Row(): | |
with gr.Column(): | |
for text_box in input_text_boxes: | |
text_box.render() | |
with gr.Column(): | |
compute_button.render() | |
output_display.render() | |
# Function call | |
compute_button.click( | |
fn=compute_embeddings, | |
inputs=input_text_boxes, | |
outputs=output_display | |
) | |
return demo | |
# Run the Gradio app | |
app_interface().launch() |