Tonic commited on
Commit
90d632e
1 Parent(s): 0ea03ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -13,7 +13,7 @@ You can use this ZeroGPU Space to test out the current model [intfloat/e5-mistra
13
  You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
14
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
15
  """
16
- os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:56'
17
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
 
19
  tasks = {
@@ -56,6 +56,7 @@ class EmbeddingModel:
56
  self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
57
  self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
58
 
 
59
  def _compute_cosine_similarity(self, emb1, emb2):
60
  tensor1 = torch.tensor(emb1).to(device).half()
61
  tensor2 = torch.tensor(emb2).to(device).half()
@@ -140,7 +141,7 @@ def app_interface():
140
  similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
141
  similarity_button.click(
142
  fn=embedding_model.compute_similarity,
143
- inputs=[task_dropdown, sentence1_box, sentence2_box, extra_sentence1_box, extra_sentence2_box],
144
  outputs=similarity_output
145
  )
146
 
 
13
  You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
14
  Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
15
  """
16
+ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
17
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
18
 
19
  tasks = {
 
56
  self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
57
  self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
58
 
59
+ @spaces.GPU
60
  def _compute_cosine_similarity(self, emb1, emb2):
61
  tensor1 = torch.tensor(emb1).to(device).half()
62
  tensor2 = torch.tensor(emb2).to(device).half()
 
141
  similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
142
  similarity_button.click(
143
  fn=embedding_model.compute_similarity,
144
+ inputs=[task_dropdown, sentence1_box, sentence2_box],
145
  outputs=similarity_output
146
  )
147