Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ You can use this ZeroGPU Space to test out the current model [intfloat/e5-mistra
|
|
13 |
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
14 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
15 |
"""
|
16 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
tasks = {
|
@@ -56,6 +56,7 @@ class EmbeddingModel:
|
|
56 |
self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
57 |
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
58 |
|
|
|
59 |
def _compute_cosine_similarity(self, emb1, emb2):
|
60 |
tensor1 = torch.tensor(emb1).to(device).half()
|
61 |
tensor2 = torch.tensor(emb2).to(device).half()
|
@@ -140,7 +141,7 @@ def app_interface():
|
|
140 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
141 |
similarity_button.click(
|
142 |
fn=embedding_model.compute_similarity,
|
143 |
-
inputs=[task_dropdown, sentence1_box, sentence2_box
|
144 |
outputs=similarity_output
|
145 |
)
|
146 |
|
|
|
13 |
You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/e5?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
14 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
15 |
"""
|
16 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:30'
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
tasks = {
|
|
|
56 |
self.tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
57 |
self.model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype=torch.float16, device_map=device)
|
58 |
|
59 |
+
@spaces.GPU
|
60 |
def _compute_cosine_similarity(self, emb1, emb2):
|
61 |
tensor1 = torch.tensor(emb1).to(device).half()
|
62 |
tensor2 = torch.tensor(emb2).to(device).half()
|
|
|
141 |
similarity_output = gr.Label(label="🐣e5-mistral🛌🏻 Similarity Scores")
|
142 |
similarity_button.click(
|
143 |
fn=embedding_model.compute_similarity,
|
144 |
+
inputs=[task_dropdown, sentence1_box, sentence2_box],
|
145 |
outputs=similarity_output
|
146 |
)
|
147 |
|