Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,12 @@ You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simp
|
|
14 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
|
15 |
"""
|
16 |
|
17 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
20 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
@@ -31,20 +36,15 @@ def get_detailed_instruct(task_description: str, query: str) -> str:
|
|
31 |
|
32 |
@spaces.GPU
|
33 |
def compute_embeddings(*input_texts):
|
34 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
35 |
-
torch.backends.cudnn.allow_tf32 = True
|
36 |
-
torch.backends.cudnn.benchmark = True
|
37 |
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
38 |
-
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
39 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
-
model.to(device)
|
41 |
max_length = 4096
|
42 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
43 |
-
|
44 |
processed_texts = [get_detailed_instruct(task, text) for text in input_texts]
|
45 |
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
46 |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
47 |
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
|
|
48 |
outputs = model(**batch_dict)
|
49 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
50 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|
|
|
14 |
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly)
|
15 |
"""
|
16 |
|
17 |
+
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50'
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
21 |
+
# torch.backends.cudnn.allow_tf32 = True
|
22 |
+
# torch.backends.cudnn.benchmark = True
|
23 |
|
24 |
def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
|
25 |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
|
|
36 |
|
37 |
@spaces.GPU
|
38 |
def compute_embeddings(*input_texts):
|
|
|
|
|
|
|
39 |
tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct')
|
40 |
+
model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct', torch_dtype="auto", device_map=device))
|
|
|
|
|
41 |
max_length = 4096
|
42 |
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
|
|
43 |
processed_texts = [get_detailed_instruct(task, text) for text in input_texts]
|
44 |
batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
|
45 |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
46 |
batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
|
47 |
+
batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
|
48 |
outputs = model(**batch_dict)
|
49 |
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
50 |
embeddings = F.normalize(embeddings, p=2, dim=1)
|