import spaces import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel import gradio as gr title = """ # 👋🏻Welcome to 🙋🏻‍♂️Tonic's 🐣e5-mistral🛌🏻Embeddings """ description = """ You can use this Space to test out the current model [intfloat/e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct). e5mistral has a larger context window, a different prompting/return mechanism and generally better results than other embedding models. You can also use 🐣e5-mistral🛌🏻 by cloning this space. 🧬🔬🔍 Simply click here: Duplicate Space Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [![Let's build the future of AI together! 🚀🤖](https://discordapp.com/api/guilds/1109943800132010065/widget.png)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [Poly](https://github.com/tonic-ai/poly) """ # Define the function to pool the last token def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] # Define the function to get detailed instruct def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-mistral-7b-instruct') model = AutoModel.from_pretrained('intfloat/e5-mistral-7b-instruct') @spaces.GPU def compute_embeddings(*input_texts): # Check if GPU is available and use it; otherwise, use CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Move model to the chosen device model.to(device) max_length = 4096 task = 'Given a web search query, retrieve relevant passages that answer the query' # Prepare the input texts processed_texts = [get_detailed_instruct(task, text) for text in input_texts] # Tokenize the input texts batch_dict = tokenizer(processed_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True) batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']] batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt') # Get model outputs outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # Normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) return embeddings.detach().cpu().numpy() def app_interface(): with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) # Input text boxes input_text_boxes = [gr.Textbox(label=f"Input Text {i+1}") for i in range(4)] # Button to compute embeddings compute_button = gr.Button("Compute Embeddings") # Output display output_display = gr.Dataframe(headers=["Embedding"], datatype=["numpy"]) # Layout with gr.Row(): with gr.Column(): for text_box in input_text_boxes: text_box.render() with gr.Column(): compute_button.render() output_display.render() # Function call compute_button.click( fn=compute_embeddings, inputs=input_text_boxes, outputs=output_display ) return demo # Run the Gradio app app_interface().launch()