import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Load model and tokenizer model_path = "ibm-granite/granite-3.0-1b-a400m-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") model.eval() def generate_response(prompt, max_new_tokens, temperature, top_p, repetition_penalty): chat = [ {"role": "user", "content": prompt}, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_tokens = tokenizer(chat, return_tensors="pt").to(model.device) output = model.generate( **input_tokens, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True ) response = tokenizer.decode(output[0], skip_special_tokens=True) return response.split("Human:", 1)[0].strip() with gr.Blocks() as demo: gr.Markdown("# 🙋🏻‍♂️Welcome to 🌟Tonic's🪨Granite-3.0-1B-A400M-Instruct Demo") gr.Markdown("Enter a prompt and adjust generation parameters to interact with the 🪨Granite-3.0-1B-A400M-Instruct model.") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=5) generate_button = gr.Button("Generate Response") max_new_tokens = gr.Slider(minimum=1, maximum=500, value=100, step=1, label="Max New Tokens") temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top P") repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, step=0.1, label="Repetition Penalty") with gr.Column() : output = gr.Textbox(label="🪨Granite3-1B", lines=10) generate_button.click( generate_response, inputs=[prompt, max_new_tokens, temperature, top_p, repetition_penalty], outputs=output ) gr.Markdown("## Examples") examples = gr.Examples( examples=[ ["Tell me about the history of artificial intelligence.", 200, 0.7, 0.9, 1.1], ["Write a short story about a robot learning to paint.", 300, 0.8, 0.95, 1.2], ["Explain the concept of quantum computing to a 10-year-old.", 150, 0.6, 0.85, 1.0], ], inputs=[prompt, max_new_tokens, temperature, top_p, repetition_penalty], ) demo.launch()