Tonic commited on
Commit
5c6a167
β€’
1 Parent(s): 8010ebe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -1,23 +1,19 @@
 
1
  import gradio as gr
2
- #import gradio.helpers
3
  import torch
4
  import os
5
  from glob import glob
6
  from pathlib import Path
7
  from typing import Optional
8
-
9
  from diffusers import StableVideoDiffusionPipeline
10
  from diffusers.utils import load_image, export_to_video
11
  from PIL import Image
12
-
13
  import uuid
14
  import random
15
  from huggingface_hub import hf_hub_download
16
 
17
- #gradio.helpers.CACHED_FOLDER = '/data/cache'
18
-
19
  pipe = StableVideoDiffusionPipeline.from_pretrained(
20
- "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
21
  )
22
  pipe.to("cuda")
23
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
@@ -25,6 +21,7 @@ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
25
 
26
  max_64_bit_int = 2**63 - 1
27
 
 
28
  def sample(
29
  image: Image,
30
  seed: Optional[int] = 42,
@@ -48,7 +45,7 @@ def sample(
48
  base_count = len(glob(os.path.join(output_folder, "*.mp4")))
49
  video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
50
 
51
- frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
52
  export_to_video(frames, video_path, fps=fps_id)
53
  torch.manual_seed(seed)
54
 
 
1
+ import spaces
2
  import gradio as gr
 
3
  import torch
4
  import os
5
  from glob import glob
6
  from pathlib import Path
7
  from typing import Optional
 
8
  from diffusers import StableVideoDiffusionPipeline
9
  from diffusers.utils import load_image, export_to_video
10
  from PIL import Image
 
11
  import uuid
12
  import random
13
  from huggingface_hub import hf_hub_download
14
 
 
 
15
  pipe = StableVideoDiffusionPipeline.from_pretrained(
16
+ "stabilityai/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
17
  )
18
  pipe.to("cuda")
19
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
 
21
 
22
  max_64_bit_int = 2**63 - 1
23
 
24
+ @spaces.GPU
25
  def sample(
26
  image: Image,
27
  seed: Optional[int] = 42,
 
45
  base_count = len(glob(os.path.join(output_folder, "*.mp4")))
46
  video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
47
 
48
+ frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=14).frames[0]
49
  export_to_video(frames, video_path, fps=fps_id)
50
  torch.manual_seed(seed)
51