Spaces:
Sleeping
Sleeping
File size: 12,877 Bytes
b4263ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import json
import logging
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import DataLoader
import os
from train_model import HybridMusicRecommender, MusicRecommenderDataset
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Add safe globals for numpy types
torch.serialization.add_safe_globals([
np.generic, # Allow numpy scalar types
np.ndarray, # Allow numpy arrays
np.dtype, # Allow numpy dtypes
np.float64, # Allow specific numpy types
np.float32,
np.int64,
np.int32
])
class RecommendationGenerator:
def __init__(self, model_path: str, catalog_data: pd.DataFrame, encoders_path: str):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.catalog_data = catalog_data
# Load model checkpoint with safety settings
logger.info(f"Loading model from {model_path}")
try:
self.checkpoint = torch.load(model_path, map_location=self.device)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
# Get config and encoders from the checkpoint
self.config = self.checkpoint.get('config', {})
if not self.config:
# Try loading from config file as fallback
try:
with open('config/model_config.json', 'r') as f:
self.config = json.load(f)
except FileNotFoundError:
logger.warning("Config file not found, using default values")
self.config = {
'embedding_dim': 64,
'hidden_layers': [256, 128, 64],
'dropout': 0.3
}
# Load encoders with safety settings
torch.serialization.add_safe_globals([LabelEncoder])
self.encoders = torch.load(encoders_path, weights_only=False)
# Print shape info for debugging
logger.info("Encoder class counts:")
for key, encoder in self.encoders.items():
if isinstance(encoder, LabelEncoder):
logger.info(f"{key}: {len(encoder.classes_)}")
# Get state dict dimensions with safety checks
state_dict = self.checkpoint['model_state_dict']
self.embedding_dims = {
'num_users': state_dict['user_embedding.weight'].shape[0],
'num_music': state_dict['music_embedding.weight'].shape[0],
'num_artists': state_dict['artist_embedding.weight'].shape[0],
'num_genres': len(self.encoders['genre_encoder'].classes_),
'num_numerical': 12
}
logger.info("Model dimensions from state dict:")
for key, value in self.embedding_dims.items():
logger.info(f"{key}: {value}")
# Safety check for catalog data
max_music_id = self.catalog_data['music_id'].nunique()
if max_music_id >= self.embedding_dims['num_music']:
logger.warning(f"Catalog contains music IDs larger than model capacity. Filtering out excess items.")
valid_music_ids = set(self.encoders['music_encoder'].transform(
self.encoders['music_encoder'].classes_[:self.embedding_dims['num_music']]
))
self.catalog_data = self.catalog_data[
self.catalog_data['music_id'].apply(
lambda x: self.encoders['music_encoder'].transform([x])[0] in valid_music_ids
)
]
logger.info(f"Filtered catalog size: {len(self.catalog_data)}")
self.model = self._initialize_model(self.embedding_dims)
def _initialize_model(self, embedding_dims):
"""Initialize and load the model from checkpoint."""
# Get dimensions from encoders
model = HybridMusicRecommender(
num_users=embedding_dims['num_users'],
num_music=embedding_dims['num_music'],
num_artists=embedding_dims['num_artists'],
num_genres=embedding_dims['num_genres'],
num_numerical=embedding_dims['num_numerical'],
embedding_dim=64,
layers=[256, 128, 64],
dropout=0.2
)
# Load state dict from checkpoint
state_dict = self.checkpoint['model_state_dict']
model.load_state_dict(state_dict)
# Move model to device and set to eval mode
model = model.to(self.device)
model.eval()
return model
def generate_recommendations(self, user_info: dict, n_recommendations: int = 10) -> pd.DataFrame:
"""
Generate music recommendations for a specific user.
Args:
user_info: Dictionary containing user information (age, gender, user_id)
n_recommendations: Number of recommendations to generate
Returns:
DataFrame containing recommended songs with predicted play counts
"""
# Create a temporary DataFrame with all songs for the user
user_candidates = self.catalog_data.copy()
user_candidates['age'] = user_info['age']
user_candidates['gender'] = user_info['gender']
user_candidates['user_id'] = user_info['user_id']
# Debug user encoding with more detailed error handling
try:
encoded_user = self.encoders['user_encoder'].transform([user_info['user_id']])[0]
logger.info(f"User ID {user_info['user_id']} encoded as: {encoded_user}")
except Exception as e:
logger.warning(f"Error encoding user ID: {str(e)}")
logger.warning("Using default encoding (0)")
encoded_user = 0
user_candidates['user_id'] = '0' # Use default user ID
# Debug catalog data
print(f"\nCatalog Statistics:")
print(f"Total songs: {len(user_candidates)}")
print(f"Unique artists: {user_candidates['artist_name'].nunique()}")
print(f"Unique genres: {user_candidates['main_genre'].nunique()}")
try:
# Create dataset with safety checks
test_dataset = MusicRecommenderDataset(
user_candidates,
mode='test',
encoders=self.encoders,
embedding_dims=self.embedding_dims # Pass embedding dimensions
)
test_loader = DataLoader(test_dataset, batch_size=128, shuffle=False)
# Generate predictions
predictions = []
indices = []
with torch.no_grad():
for i, batch in enumerate(test_loader):
batch = {k: v.to(self.device) for k, v in batch.items()}
pred = self.model(batch)
predictions.extend(pred.cpu().numpy())
indices.extend(range(i * test_loader.batch_size,
min((i + 1) * test_loader.batch_size, len(test_dataset))))
except Exception as e:
logger.error(f"Error generating recommendations: {str(e)}")
raise
# Create recommendations DataFrame and ensure uniqueness
recommendations = pd.DataFrame({
'music': user_candidates['music'].values[indices],
'artist_name': user_candidates['artist_name'].values[indices],
'genre': user_candidates['main_genre'].values[indices],
'predicted_plays': predictions
})
# Drop duplicates keeping first occurrence (highest predicted play count)
recommendations = recommendations.drop_duplicates(subset=['music'], keep='first')
# Convert predictions to scalar values and sort
recommendations['predicted_plays'] = recommendations['predicted_plays'].apply(lambda x: float(x[0]))
# Sort by predicted plays and get top N recommendations
recommendations = recommendations.sort_values('predicted_plays', ascending=False)
recommendations = recommendations.head(n_recommendations)
# Debug predictions
print(f"\nPrediction Statistics:")
min_pred = recommendations['predicted_plays'].min()
max_pred = recommendations['predicted_plays'].max()
std_pred = recommendations['predicted_plays'].std()
print(f"Prediction range: {min_pred:.2f} to {max_pred:.2f}")
print(f"Prediction std: {std_pred:.2f}")
# Print top recommendations with better formatting
print("\nTop 10 Recommended Songs:")
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
print(recommendations.to_string(index=False, float_format=lambda x: '{:.2f}'.format(x) if isinstance(x, (float, np.float32, np.float64)) else str(x)))
return recommendations.reset_index(drop=True)
class HybridMusicRecommender(nn.Module):
def __init__(self, num_users, num_music, num_artists, num_genres, num_numerical,
embedding_dim=64, layers=[256, 128, 64], dropout=0.2):
super().__init__()
# Embedding layers
self.user_embedding = nn.Embedding(num_users, embedding_dim)
self.music_embedding = nn.Embedding(num_music, embedding_dim)
self.artist_embedding = nn.Embedding(num_artists, embedding_dim)
self.genre_embedding = nn.Embedding(num_genres, embedding_dim)
# Feature processing layers with residual connections
self.numerical_layer = nn.Sequential(
nn.Linear(num_numerical, embedding_dim),
nn.ReLU(),
nn.BatchNorm1d(embedding_dim)
)
self.binary_layer = nn.Sequential(
nn.Linear(2, embedding_dim),
nn.ReLU(),
nn.BatchNorm1d(embedding_dim)
)
# Calculate total input features
total_features = embedding_dim * 6 # 4 embeddings + numerical + binary
# MLP layers with residual connections
self.fc_layers = nn.ModuleList()
input_dim = total_features
for layer_size in layers:
self.fc_layers.append(nn.ModuleDict({
'main': nn.Sequential(
nn.Linear(input_dim, layer_size),
nn.ReLU(),
nn.BatchNorm1d(layer_size),
nn.Dropout(dropout)
),
'residual': nn.Linear(input_dim, layer_size) if input_dim != layer_size else None
}))
input_dim = layer_size
self.final_layer = nn.Linear(layers[-1], 1)
def forward(self, batch):
# Get embeddings
user_emb = self.user_embedding(batch['user_id'])
music_emb = self.music_embedding(batch['music_id'])
artist_emb = self.artist_embedding(batch['artist_id'])
genre_emb = self.genre_embedding(batch['genre_id'])
# Process numerical features
numerical = self.numerical_layer(batch['numerical_features'])
# Process binary features
binary = torch.stack([batch['explicit'], batch['gender']], dim=1).float()
binary = self.binary_layer(binary)
# Concatenate all features
x = torch.cat([
user_emb, music_emb, artist_emb, genre_emb, numerical, binary
], dim=1)
# Apply MLP layers with residual connections
for layer in self.fc_layers:
identity = x
x = layer['main'](x)
if layer['residual'] is not None:
x = x + layer['residual'](identity)
# Final prediction
return self.final_layer(x)
def main():
# Example usage
BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
model_path = 'checkpoints/best_model.pth'
catalog_data = pd.read_csv(os.path.join(BASE_DIR, 'data', 'test_data.csv'))
encoders_path = os.path.join(BASE_DIR, 'data', 'data_encoders.pt')
# Initialize recommendation generator
recommender = RecommendationGenerator(model_path, catalog_data, encoders_path)
# Example user
user_info = {
'age': 32,
'gender': 'M',
'genre': 'Pop',
'music': 'Shape of You',
'user_id': '44d39c6e5e7b45bfc2187fb3c89be58c5a3dc6a54d2a0075402c551c14ea1459'
}
# Generate recommendations
recommendations = recommender.generate_recommendations(user_info, n_recommendations=10)
print("\nTop 10 Recommended Songs:")
print(recommendations.to_string(index=False))
if __name__ == "__main__":
main()
|