johnsonhung906 commited on
Commit
6792367
·
1 Parent(s): 7bef68d

update style and toggle demos

Browse files
Files changed (3) hide show
  1. demo.html +94 -78
  2. demo_results/normal_5.png +0 -0
  3. index.html +221 -222
demo.html CHANGED
@@ -3,111 +3,127 @@
3
  <head>
4
  <meta charset="UTF-8">
5
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
- <title>Image Gallery</title>
7
  <style>
8
- body {
9
- font-family: Arial, sans-serif;
10
- text-align: center;
11
- background-color: #f4f4f4;
12
- padding: 20px;
 
13
  }
14
 
15
  .image-gallery {
16
- display: flex; /* Use flexbox for side-by-side images */
17
- justify-content: center;
18
- gap: 20px; /* Space between images */
19
- margin-top: 20px; /* Add space above the image gallery */
20
  }
21
 
22
  .image-gallery img {
23
- width: 80%; /* Set width to 80% of the window */
24
- max-width: 500px; /* Ensure maximum width remains 500px */
25
- height: auto; /* Maintain aspect ratio */
26
- border-radius: 10px; /* Rounded corners for images */
27
- box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); /* Add shadow to images */
28
- display: none; /* Initially hide all images */
29
  }
30
 
31
- .button-container {
32
- text-align: center;
33
- margin-top: 20px;
34
  }
35
 
36
- .button-container .group-title {
37
- font-weight: bold;
38
- margin: 20px 0 10px;
39
- font-size: 1.2em;
40
- }
41
-
42
- .normal-button {
43
- background-color: #28a745; /* Green for Normal Data */
44
- }
45
-
46
- .attack-button {
47
- background-color: #dc3545; /* Red for Attack Data */
48
  }
49
 
50
- .button-container button {
51
- padding: 10px 20px;
52
- margin: 5px;
53
- border: none;
54
- color: white;
55
- cursor: pointer;
56
- border-radius: 5px;
57
- font-size: 1em; /* Increased font size */
58
- transition: background-color 0.3s, transform 0.3s; /* Smooth transitions */
59
  }
60
 
61
- .button-container button:hover {
62
- transform: scale(1.05); /* Slightly increase size on hover */
63
  }
64
 
65
- .normal-button:hover {
66
- background-color: #218838; /* Darker green on hover */
67
  }
68
 
69
- .attack-button:hover {
70
- background-color: #c82333; /* Darker red on hover */
 
 
71
  }
72
  </style>
73
  </head>
74
  <body>
 
 
 
 
 
 
 
 
 
 
75
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  <script>
78
- function showNormalImage(normalImageId) {
79
- // Hide all normal images
80
- var normalImages = document.querySelectorAll('.image-gallery img[id^="normalImage"]');
81
- normalImages.forEach(function(image) {
82
- image.style.display = 'none'; // Hide normal images
83
- });
84
-
85
- // Show the selected normal image
86
- document.getElementById(normalImageId).style.display = 'block'; // Show the selected normal image
87
-
88
- // Optionally, you can show the corresponding attack image by default
89
- // Uncomment the following line if you want the first attack image to be displayed when a normal image is shown
90
- // document.getElementById('attackImage1').style.display = 'block'; // Show the default attack image
91
- }
92
-
93
- function showAttackImage(attackImageId) {
94
- // Hide all attack images
95
- var attackImages = document.querySelectorAll('.image-gallery img[id^="attackImage"]');
96
- attackImages.forEach(function(image) {
97
- image.style.display = 'none'; // Hide attack images
98
- });
99
-
100
- // Show the selected attack image
101
- document.getElementById(attackImageId).style.display = 'block'; // Show the selected attack image
102
-
103
- // Optionally, you can show the corresponding normal image by default
104
- // Uncomment the following line if you want the first normal image to be displayed when an attack image is shown
105
- // document.getElementById('normalImage1').style.display = 'block'; // Show the default normal image
 
 
 
 
 
 
 
 
106
  }
107
-
108
- // Initial display settings
109
- document.getElementById('normalImage1').style.display = 'block'; // Show first normal image
110
- document.getElementById('attackImage1').style.display = 'block'; // Show first attack image
111
  </script>
112
  </body>
113
  </html>
 
3
  <head>
4
  <meta charset="UTF-8">
5
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Image Gallery Navigation</title>
7
  <style>
8
+ .image-gallery-container {
9
+ position: relative;
10
+ display: flex;
11
+ justify-content: center;
12
+ align-items: center;
13
+ margin: 20px auto;
14
  }
15
 
16
  .image-gallery {
17
+ width: 800px; /* Increased width */
18
+ max-height: 600px; /* Increased height */
19
+ overflow: hidden;
20
+ position: relative;
21
  }
22
 
23
  .image-gallery img {
24
+ width: 100%;
25
+ height: auto;
26
+ border-radius: 10px;
27
+ display: none;
 
 
28
  }
29
 
30
+ .image-gallery img.active {
31
+ display: block;
 
32
  }
33
 
34
+ .arrow {
35
+ cursor: pointer;
36
+ position: absolute;
37
+ top: 50%;
38
+ transform: translateY(-50%);
39
+ font-size: 2.5em;
40
+ color: #444; /* Darker color */
41
+ padding: 5px 15px;
42
+ transition: color 0.3s;
43
+ user-select: none;
44
+ transform: scaleX(0.7);
 
45
  }
46
 
47
+ .arrow:hover {
48
+ color: #007bff; /* Color on hover */
 
 
 
 
 
 
 
49
  }
50
 
51
+ .left-arrow {
52
+ left: 20px; /* Adjusted position */
53
  }
54
 
55
+ .right-arrow {
56
+ right: 20px; /* Adjusted position */
57
  }
58
 
59
+ .group-title {
60
+ font-weight: bold;
61
+ margin-top: 30px;
62
+ font-size: 1.2em;
63
  }
64
  </style>
65
  </head>
66
  <body>
67
+ <div class="image-gallery-container normal-gallery">
68
+ <span class="arrow left-arrow" onclick="navigateImages('normal', -1)">&lt;</span>
69
+ <div class="image-gallery">
70
+ <img id="normalImage1" src="./demo_results/normal_1.png" class="active" alt="Normal Image 1">
71
+ <img id="normalImage2" src="./demo_results/normal_2.png" alt="Normal Image 2">
72
+ <img id="normalImage3" src="./demo_results/normal_3.png" alt="Normal Image 3">
73
+ <img id="normalImage4" src="./demo_results/normal_4.png" alt="Normal Image 4">
74
+ </div>
75
+ <span class="arrow right-arrow" onclick="navigateImages('normal', 1)">&gt;</span>
76
+ </div>
77
 
78
+ <div class="image-gallery-container attack-gallery">
79
+ <span class="arrow left-arrow" onclick="navigateImages('attack', -1)">&lt;</span>
80
+ <div class="image-gallery">
81
+ <img id="attackImage1" src="./demo_results/attack_1.png" class="active" alt="Attack Image 1">
82
+ <img id="attackImage2" src="./demo_results/attack_2.png" alt="Attack Image 2">
83
+ <img id="attackImage3" src="./demo_results/attack_3.png" alt="Attack Image 3">
84
+ <img id="attackImage4" src="./demo_results/attack_4.png" alt="Attack Image 4">
85
+ </div>
86
+ <span class="arrow right-arrow" onclick="navigateImages('attack', 1)">&gt;</span>
87
+ </div>
88
 
89
  <script>
90
+ let normalIndex = 0;
91
+ let attackIndex = 0;
92
+
93
+ function navigateImages(type, direction) {
94
+ let images;
95
+ let currentIndex;
96
+
97
+ // Determine which set of images to target and the current index
98
+ if (type === 'normal') {
99
+ images = document.querySelectorAll('.normal-gallery .image-gallery img');
100
+ currentIndex = normalIndex;
101
+ } else if (type === 'attack') {
102
+ images = document.querySelectorAll('.attack-gallery .image-gallery img');
103
+ currentIndex = attackIndex;
104
+ }
105
+
106
+ // Check if images were found to avoid accessing undefined elements
107
+ if (images && images.length > 0) {
108
+ // Hide current image
109
+ images[currentIndex].classList.remove('active');
110
+
111
+ // Calculate new index (modulo ensures cycling)
112
+ currentIndex = (currentIndex + direction + images.length) % images.length;
113
+
114
+ // Show new image
115
+ images[currentIndex].classList.add('active');
116
+
117
+ // Update index tracker
118
+ if (type === 'normal') {
119
+ normalIndex = currentIndex;
120
+ } else if (type === 'attack') {
121
+ attackIndex = currentIndex;
122
+ }
123
+ } else {
124
+ console.error("No images found for type:", type);
125
+ }
126
  }
 
 
 
 
127
  </script>
128
  </body>
129
  </html>
demo_results/normal_5.png ADDED
index.html CHANGED
@@ -3,27 +3,28 @@
3
  <head>
4
  <meta charset="UTF-8">
5
 
6
- <!-- Begin Jekyll SEO tag v2.8.0 -->
7
- <title>Attention Tracker | Attention Tracker: Detecting Prompt Injection Attacks in LLMs </title>
8
- <meta property="og:title" content="Gradient Cuff" />
9
- <meta property="og:locale" content="en_US" />
10
- <meta name="description" content="Detecting Prompt Injection Attacks in LLMs using attention" />
11
- <meta property="og:description" content="Detecting Prompt Injection Attacks in LLMs using attention" />
12
- <script type="application/ld+json">
13
- {"@context":"https://schema.org","@type":"WebSite","description":"Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes","headline":"Gradient Cuff","name":"Gradient Cuff","url":"https://huggingface.co/spaces/gregH/Gradient Cuff"}</script>
14
- <!-- End Jekyll SEO tag -->
15
-
16
- <link rel="preconnect" href="https://fonts.gstatic.com">
17
  <link rel="preload" href="https://fonts.googleapis.com/css?family=Open+Sans:400,700&display=swap" as="style" type="text/css" crossorigin>
18
  <meta name="viewport" content="width=device-width, initial-scale=1">
19
  <meta name="theme-color" content="#157878">
20
- <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
21
 
22
  <link rel="stylesheet" href="assets/css/bootstrap/bootstrap.min.css?v=90447f115a006bc45b738d9592069468b20e2551">
23
  <link rel="stylesheet" href="assets/css/style.css?v=90447f115a006bc45b738d9592069468b20e2551">
24
  <!-- start custom head snippets, customize with your own _includes/head-custom.html file -->
25
  <link rel="stylesheet" href="assets/css/custom_style.css?v=90447f115a006bc45b738d9592069468b20e2551">
26
- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
 
27
  <link rel="stylesheet" href="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/themes/smoothness/jquery-ui.css">
28
  <script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery-ui.min.js"></script>
29
  <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.4/Chart.js"></script>
@@ -31,126 +32,132 @@
31
  <link rel="stylesheet" href="//code.jquery.com/ui/1.13.2/themes/base/jquery-ui.css">
32
  <link rel="stylesheet" href="/resources/demos/style.css">
33
  <script src="https://code.jquery.com/jquery-3.6.0.js"></script>
34
- <script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script>
 
 
 
 
 
 
35
  <script>
36
- function showNormalImage(normalImageId) {
37
- // Hide all normal images
38
- var normalImages = document.querySelectorAll('.image-gallery img[id^="normalImage"]');
39
- normalImages.forEach(function(image) {
40
- image.style.display = 'none'; // Hide normal images
41
- });
42
-
43
- // Show the selected normal image
44
- document.getElementById(normalImageId).style.display = 'block'; // Show the selected normal image
45
-
46
- // Optionally, you can show the corresponding attack image by default
47
- // Uncomment the following line if you want the first attack image to be displayed when a normal image is shown
48
- // document.getElementById('attackImage1').style.display = 'block'; // Show the default attack image
49
- }
50
-
51
- function showAttackImage(attackImageId) {
52
- // Hide all attack images
53
- var attackImages = document.querySelectorAll('.image-gallery img[id^="attackImage"]');
54
- attackImages.forEach(function(image) {
55
- image.style.display = 'none'; // Hide attack images
56
- });
57
-
58
- // Show the selected attack image
59
- document.getElementById(attackImageId).style.display = 'block'; // Show the selected attack image
60
-
61
- // Optionally, you can show the corresponding normal image by default
62
- // Uncomment the following line if you want the first normal image to be displayed when an attack image is shown
63
- // document.getElementById('normalImage1').style.display = 'block'; // Show the default normal image
 
 
 
 
 
 
 
 
64
  }
65
-
66
- // Initial display settings
67
- document.getElementById('normalImage1').style.display = 'block'; // Show first normal image
68
- document.getElementById('attackImage1').style.display = 'block'; // Show first attack image
69
  </script>
70
-
71
-
72
-
73
-
74
- <!-- for mathjax support -->
75
- <script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
76
- <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
77
- <!-- end custom head snippets -->
78
  <style>
79
- /* body {
80
- font-family: Arial, sans-serif;
81
- text-align: center;
82
- background-color: #f4f4f4;
83
- padding: 0px;
84
- } */
 
85
 
86
  .image-gallery {
87
- display: flex; /* Use flexbox for side-by-side images */
88
- justify-content: center;
89
- gap: 20px; /* Space between images */
90
- margin-top: 20px; /* Add space above the image gallery */
 
 
91
  }
92
 
93
  .image-gallery img {
94
- width: 100%; /* Set width to 80% of the window */
95
- max-width: 1200px; /* Ensure maximum width remains 500px */
96
- height: auto; /* Maintain aspect ratio */
97
- border-radius: 10px; /* Rounded corners for images */
98
- box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); /* Add shadow to images */
99
- display: none; /* Initially hide all images */
100
  }
101
 
102
- .button-container {
103
- text-align: center;
104
- margin-top: 20px;
105
  }
106
 
107
- .button-container .group-title {
108
- font-weight: bold;
109
- margin: 20px 0 10px;
110
- font-size: 1.2em;
 
 
 
 
 
 
 
111
  }
112
 
113
- .normal-button {
114
- background-color: #28a745; /* Green for Normal Data */
115
  }
116
 
117
- .attack-button {
118
- background-color: #dc3545; /* Red for Attack Data */
119
  }
120
 
121
- .button-container button {
122
- padding: 10px 20px;
123
- margin: 5px;
124
- border: none;
125
- color: white;
126
- cursor: pointer;
127
- border-radius: 5px;
128
- font-size: 1em; /* Increased font size */
129
- transition: background-color 0.3s, transform 0.3s; /* Smooth transitions */
130
  }
131
 
132
- .button-container button:hover {
133
- transform: scale(1.05); /* Slightly increase size on hover */
 
 
 
 
 
 
134
  }
135
-
136
- .normal-button:hover {
137
- background-color: #218838; /* Darker green on hover */
138
  }
139
 
140
- .attack-button:hover {
141
- background-color: #c82333; /* Darker red on hover */
142
  }
143
  </style>
144
 
145
  </head>
146
  <body>
147
- <a id="skip-to-content" href="#content">Skip to the content.</a>
148
-
149
  <header class="page-header" role="banner">
150
  <h1 class="project-name">Attention Tracker</h1>
151
  <h2 class="project-tagline">Attention Tracker: Detecting Prompt Injection Attacks in LLMs</h2>
152
  <h2 class="project-tagline"><a href="https://arxiv.org/abs/xxx" style="color: white;" target="_blank" rel="noopener noreferrer">https://arxiv.org/abs/xx.xx</a></h2>
153
- <!-- <h2 class="project-tagline"><a href="https://huggingface.co/spaces/pinyuchen/attention-tracker-Jailbreak-Detector" style="color: white;" target="_blank" rel="noopener noreferrer">Live Demo</a></h2> -->
154
  <div style="text-align: center; font-size: large;">
155
  <div>
156
  <a href="https://khhung906.github.io/" style="color: white;" target="_blank" rel="noopener noreferrer">
@@ -179,135 +186,127 @@
179
  <sup>1</sup>National Taiwan University <sup>2</sup>IBM Research
180
  </div>
181
  </header>
182
-
183
  <main id="content" class="main-content" role="main">
184
  <h2 id="abstract">Abstract</h2>
185
 
186
- <p>Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate
187
- the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs.
188
- We introduce the concept of the <strong>distraction effect</strong>, where specific attention heads, termed
189
- important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose <strong>Attention
190
- Tracker</strong>, a training-free detection method that tracks attention patterns on instruction to detect
191
- prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets,
192
- and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We
193
- demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
194
- </p>
195
-
196
- <h2 id="what-is-jailbreak">What is Prompt Injection Attack?</h2>
197
- <p>A Prompt Injection Attack is a technique used to manipulate language models (like GPT-3 or similar AI systems) by injecting malicious or deceptive prompts into the input data, causing the model to behave in unexpected or undesired ways. This attack exploits the way language models interpret and respond to instructions, tricking them into providing information or performing actions that were not originally intended.</p>
198
-
199
-
200
- <h2 id="refusal-loss">Distraction Effect</h2>
201
-
202
- <p>
203
- In this section, we analyze the reasons behind the success of prompt injection attacks on LLMs. Specifically, we aim to understand
204
- <strong>what mechanism within LLMs causes them to "ignore" the original instruction and follow the injected instruction instead</strong>.
205
- To explore this, we examine the attention patterns of the last token in the input prompts, as it has the most direct influence on the LLMs' output.
206
- </p>
207
-
208
- <div class="container">
209
- <div><img id="attn-map-img" src="./figures/attn_map.png" /></div>
210
- </div>
211
-
212
- <p>
213
- In the figure (a), we visualize the attention maps of the last token in the input prompt for normal and attack data. We observe that the attention maps for normal data are much darker than those for attacked data, particularly in the middle and earlier layers of the LLM. This indicates that the last token's attention to the instruction is significantly higher for normal data than for attack data in specific attention heads. When inputting attacked data, the attention shifts away from the original instruction towards the attack data, which we refer to as the <strong>distraction effect</strong>.
214
- Additionally, in the figure (b), we find that the attention focus shifts from the original instruction to the injected instruction in the attack data. This suggests that the separator string helps the attacker shift attention to the injected instruction, causing the LLM to perform the injected task instead of the target task.
215
- </p>
216
-
217
-
218
- </div>
219
-
220
- <h2 id="proposed-approach-attention-tracker">Proposed Approach: Attention Tracker</h2>
221
- <p> With the discover of distraction effect, we propose <strong>Attention Tracker</strong>,
222
- a prompt injection detection method based on tracking the attention pattern on instruction. Our detection procedure is shown below:
223
- </p>
224
-
225
- <div class="container"><img id="attention-tracker-header" src="./figures/main.png" /></div>
226
-
227
- <p></p>
228
- <p>
229
- Attention Tracker can be summarized into two phases:
230
- </p>
231
- <p>
232
- <strong>(Phase 1) Finding Important Heads:</strong> In the first step, we identify specific attention head that that exhibit the distraction effect, which we termed the important heads. To find the important heads, we use a set of LLM-generated sentences with the ignore attack as the dataset.
233
- </p>
234
- <p>
235
- <strong>(Phase 2) Prompt Injection Detection with Important Heads:</strong> In the second step, we feed the testing quries into the target LLM and aggregate the attention directed towards the instruction in the important heads. With this aggregated score which we call the <strong>focus score</strong>, we can effectively detect prompt injection attacks.
236
- </p>
237
-
238
- <p>
239
- We provide more details about the running flow of Attention Tracker in the paper.
240
- </p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241
 
242
-
243
-
244
- <h2 id="result-attention-tracker">Experiment Result</h2>
245
- <p>
246
- In this section, we evaluate Attention Tracker against various baselines with the AUROC score on two prompt injection detection benchmarks: Open-Prompt-Injection and deepset prompt injection dataset:
247
- </p>
248
- <div class="container"><img id="attention-tracker-header" src="./figures/result.png" /></div>
249
- <p/>
250
- <p>
251
- As shown in the table, Attention Tracker consistently outperforms existing baselines, with an AUROC improvement of up to 3.1% on the Open-Prompt-Injection benchmark and 10.0% on the deepset prompt injection dataset. Among training-free methods, it achieves even greater gains, with an average AUROC improvement of 31.3% and 20.9% across the two datasets, respectively. Unlike LLM-based methods that rely on larger models for stability, Attention Tracker delivers robust and effective performance even with smaller LLMs, underscoring its suitability for real-world applications.
252
- </p>
253
- <h2 id="demonstration">Demonstration</h2>
254
-
255
- <p>
256
- We evaluated the effectiveness of the Attention Tracker by visualizing the distribution of attention aggregation for key heads across different data types (normal data vs. attack data) in the Open-Prompt-Injection dataset. Additionally, we calculated the focus score for these data samples. A higher focus score indicates a lower likelihood of prompt injection attacks. The tested model is Qwen-2 1.8b.
257
- </p>
258
-
259
- <div class="button-container">
260
- <div class="group-title">Normal Data</div>
261
- <button class="normal-button" onclick="showNormalImage('normalImage1')">Normal 1</button>
262
- <button class="normal-button" onclick="showNormalImage('normalImage2')">Normal 2</button>
263
- <button class="normal-button" onclick="showNormalImage('normalImage3')">Normal 3</button>
264
- <button class="normal-button" onclick="showNormalImage('normalImage4')">Normal 4</button>
265
- </div>
266
-
267
- <div class="image-gallery">
268
- <img id="normalImage1" src="./demo_results/normal_1.png" alt="Normal Image 1">
269
- <img id="normalImage2" src="./demo_results/normal_2.png" alt="Normal Image 2">
270
- <img id="normalImage3" src="./demo_results/normal_3.png" alt="Normal Image 3">
271
- <img id="normalImage4" src="./demo_results/normal_4.png" alt="Normal Image 4">
272
- </div>
273
-
274
- <div class="button-container">
275
- <div class="group-title">Attack Data</div>
276
- <button class="attack-button" onclick="showAttackImage('attackImage1')">Attack 1</button>
277
- <button class="attack-button" onclick="showAttackImage('attackImage2')">Attack 2</button>
278
- <button class="attack-button" onclick="showAttackImage('attackImage3')">Attack 3</button>
279
- <button class="attack-button" onclick="showAttackImage('attackImage4')">Attack 4</button>
280
- </div>
281
-
282
- <div class="image-gallery">
283
- <img id="attackImage1" src="./demo_results/attack_1.png" alt="Attack Image 1">
284
- <img id="attackImage2" src="./demo_results/attack_2.png" alt="Attack Image 2">
285
- <img id="attackImage3" src="./demo_results/attack_3.png" alt="Attack Image 3">
286
- <img id="attackImage4" src="./demo_results/attack_4.png" alt="Attack Image 4">
287
- </div>
288
-
289
- <h2 id="inquiries"> Inquiries on Attention Tracker</h2>
290
- <p> Please contact <a href="Mailto:khhung906@gmail.com">Kuo-Han Hung</a>
291
- and <a href="Mailto:pin-yu.chen@ibm.com">Pin-Yu Chen</a>
292
- </p>
293
- <h2 id="citations">Citations</h2>
294
- <p>If you find Attention Tracker helpful and useful for your research, please cite our main paper as follows:</p>
295
-
296
- <div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>
297
- <!-- @misc{hu2024gradient,
298
- title={Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes},
299
- author={Xiaomeng Hu and Pin-Yu Chen and Tsung-Yi Ho},
300
- year={2024},
301
- eprint={2403.00867},
302
- archivePrefix={arXiv},
303
- primaryClass={cs.CR} }-->
304
-
305
- </code></pre></div></div>
306
-
307
 
308
  <footer class="site-footer">
309
 
310
- <span class="site-footer-owner">This website is maintained by <a href="https://khhung906.github.io/">Kuo-Han Hung</a></a>.</span>
311
 
312
  </footer>
313
  </main>
 
3
  <head>
4
  <meta charset="UTF-8">
5
 
6
+ <!-- Begin Jekyll SEO tag v2.8.0 -->
7
+ <title>Attention Tracker | Attention Tracker: Detecting Prompt Injection Attacks in LLMs </title>
8
+ <meta property="og:title" content="Gradient Cuff" />
9
+ <meta property="og:locale" content="en_US" />
10
+ <meta name="description" content="Detecting Prompt Injection Attacks in LLMs using attention" />
11
+ <meta property="og:description" content="Detecting Prompt Injection Attacks in LLMs using attention" />
12
+ <script type="application/ld+json">
13
+ {"@context":"https://schema.org","@type":"WebSite","description":"Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes","headline":"Gradient Cuff","name":"Gradient Cuff","url":"https://huggingface.co/spaces/gregH/Gradient Cuff"}</script>
14
+ <!-- End Jekyll SEO tag -->
15
+
16
+ <!-- <link rel="preconnect" href="https://fonts.gstatic.com">
17
  <link rel="preload" href="https://fonts.googleapis.com/css?family=Open+Sans:400,700&display=swap" as="style" type="text/css" crossorigin>
18
  <meta name="viewport" content="width=device-width, initial-scale=1">
19
  <meta name="theme-color" content="#157878">
20
+ <meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"> -->
21
 
22
  <link rel="stylesheet" href="assets/css/bootstrap/bootstrap.min.css?v=90447f115a006bc45b738d9592069468b20e2551">
23
  <link rel="stylesheet" href="assets/css/style.css?v=90447f115a006bc45b738d9592069468b20e2551">
24
  <!-- start custom head snippets, customize with your own _includes/head-custom.html file -->
25
  <link rel="stylesheet" href="assets/css/custom_style.css?v=90447f115a006bc45b738d9592069468b20e2551">
26
+
27
+ <!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
28
  <link rel="stylesheet" href="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/themes/smoothness/jquery-ui.css">
29
  <script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.12.1/jquery-ui.min.js"></script>
30
  <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.9.4/Chart.js"></script>
 
32
  <link rel="stylesheet" href="//code.jquery.com/ui/1.13.2/themes/base/jquery-ui.css">
33
  <link rel="stylesheet" href="/resources/demos/style.css">
34
  <script src="https://code.jquery.com/jquery-3.6.0.js"></script>
35
+ <script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script> -->
36
+
37
+ <!-- for mathjax support -->
38
+ <script src="https://cdnjs.cloudflare.com/polyfill/v3/polyfill.min.js?features=es6"></script>
39
+ <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
40
+ <!-- end custom head snippets -->
41
+
42
  <script>
43
+ let normalIndex = 0;
44
+ let attackIndex = 0;
45
+
46
+ function navigateImages(type, direction) {
47
+ let images;
48
+ let currentIndex;
49
+
50
+ // Determine which set of images to target and the current index
51
+ if (type === 'normal') {
52
+ images = document.querySelectorAll('.normal-gallery .image-gallery img');
53
+ currentIndex = normalIndex;
54
+ } else if (type === 'attack') {
55
+ images = document.querySelectorAll('.attack-gallery .image-gallery img');
56
+ currentIndex = attackIndex;
57
+ }
58
+
59
+ // Check if images were found to avoid accessing undefined elements
60
+ if (images && images.length > 0) {
61
+ // Hide current image
62
+ images[currentIndex].classList.remove('active');
63
+
64
+ // Calculate new index (modulo ensures cycling)
65
+ currentIndex = (currentIndex + direction + images.length) % images.length;
66
+
67
+ // Show new image
68
+ images[currentIndex].classList.add('active');
69
+
70
+ // Update index tracker
71
+ if (type === 'normal') {
72
+ normalIndex = currentIndex;
73
+ } else if (type === 'attack') {
74
+ attackIndex = currentIndex;
75
+ }
76
+ } else {
77
+ console.error("No images found for type:", type);
78
+ }
79
  }
 
 
 
 
80
  </script>
81
+
 
 
 
 
 
 
 
82
  <style>
83
+ .image-gallery-container {
84
+ position: relative;
85
+ display: flex;
86
+ justify-content: center;
87
+ align-items: center;
88
+ margin: 20px auto;
89
+ }
90
 
91
  .image-gallery {
92
+ width: 80%; /* Increased width */
93
+ max-height: 600px; /* Increased height */
94
+ overflow: hidden;
95
+ position: relative;
96
+ margin-left: 50px;
97
+ margin-right: 50px;
98
  }
99
 
100
  .image-gallery img {
101
+ width: 100%;
102
+ height: auto;
103
+ border-radius: 10px;
104
+ display: none;
 
 
105
  }
106
 
107
+ .image-gallery img.active {
108
+ display: block;
 
109
  }
110
 
111
+ .arrow {
112
+ cursor: pointer;
113
+ position: absolute;
114
+ top: 50%;
115
+ transform: translateY(-50%);
116
+ font-size: 2.5em;
117
+ color: #444; /* Darker color */
118
+ padding: 5px 15px;
119
+ transition: color 0.3s;
120
+ user-select: none;
121
+ transform: scaleX(0.7);
122
  }
123
 
124
+ .arrow:hover {
125
+ color: #007bff; /* Color on hover */
126
  }
127
 
128
+ .left-arrow {
129
+ left: 20px; /* Adjusted position */
130
  }
131
 
132
+ .right-arrow {
133
+ right: 20px; /* Adjusted position */
 
 
 
 
 
 
 
134
  }
135
 
136
+ .group-title {
137
+ font-size: large;
138
+ font-weight: bold;
139
+ margin-top: 30px;
140
+ font-size: 1.2em;
141
+ text-align: center; /* Center the text */
142
+ display: block; /* Ensure it behaves as a block element */
143
+ margin-bottom: 10px; /* Add some space below the title */
144
  }
145
+
146
+ .green {
147
+ color: green; /* Set text color to green */
148
  }
149
 
150
+ .red {
151
+ color: red; /* Set text color to green */
152
  }
153
  </style>
154
 
155
  </head>
156
  <body>
 
 
157
  <header class="page-header" role="banner">
158
  <h1 class="project-name">Attention Tracker</h1>
159
  <h2 class="project-tagline">Attention Tracker: Detecting Prompt Injection Attacks in LLMs</h2>
160
  <h2 class="project-tagline"><a href="https://arxiv.org/abs/xxx" style="color: white;" target="_blank" rel="noopener noreferrer">https://arxiv.org/abs/xx.xx</a></h2>
 
161
  <div style="text-align: center; font-size: large;">
162
  <div>
163
  <a href="https://khhung906.github.io/" style="color: white;" target="_blank" rel="noopener noreferrer">
 
186
  <sup>1</sup>National Taiwan University <sup>2</sup>IBM Research
187
  </div>
188
  </header>
 
189
  <main id="content" class="main-content" role="main">
190
  <h2 id="abstract">Abstract</h2>
191
 
192
+ <p>Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks, where malicious inputs manipulate the model into ignoring original instructions and executing designated action. In this paper, we investigate
193
+ the underlying mechanisms of these attacks by analyzing the attention patterns within LLMs.
194
+ We introduce the concept of the <strong>distraction effect</strong>, where specific attention heads, termed
195
+ important heads, shift focus from the original instruction to the injected instruction. Building on this discovery, we propose <strong>Attention
196
+ Tracker</strong>, a training-free detection method that tracks attention patterns on instruction to detect
197
+ prompt injection attacks without the need for additional LLM inference. Our method generalizes effectively across diverse models, datasets,
198
+ and attack types, showing an AUROC improvement of up to 10.0% over existing methods, and performs well even on small LLMs. We
199
+ demonstrate the robustness of our approach through extensive evaluations and provide insights into safeguarding LLM-integrated systems from prompt injection vulnerabilities.
200
+ </p>
201
+
202
+ <h2 id="what-is-jailbreak">What is Prompt Injection Attack?</h2>
203
+ <p>A Prompt Injection Attack is a technique used to manipulate language models (like GPT-3 or similar AI systems) by injecting malicious or deceptive prompts into the input data, causing the model to behave in unexpected or undesired ways. This attack exploits the way language models interpret and respond to instructions, tricking them into providing information or performing actions that were not originally intended.</p>
204
+
205
+
206
+ <h2 id="refusal-loss">Distraction Effect</h2>
207
+
208
+ <p>
209
+ In this section, we analyze the reasons behind the success of prompt injection attacks on LLMs. Specifically, we aim to understand
210
+ <strong>what mechanism within LLMs causes them to "ignore" the original instruction and follow the injected instruction instead</strong>.
211
+ To explore this, we examine the attention patterns of the last token in the input prompts, as it has the most direct influence on the LLMs' output.
212
+ </p>
213
+
214
+ <div class="container">
215
+ <div><img id="attn-map-img" src="./figures/attn_map.png" /></div>
216
+ </div>
217
+
218
+ <p>
219
+ In the figure (a), we visualize the attention maps of the last token in the input prompt for normal and attack data. We observe that the attention maps for normal data are much darker than those for attacked data, particularly in the middle and earlier layers of the LLM. This indicates that the last token's attention to the instruction is significantly higher for normal data than for attack data in specific attention heads. When inputting attacked data, the attention shifts away from the original instruction towards the attack data, which we refer to as the <strong>distraction effect</strong>.
220
+ Additionally, in the figure (b), we find that the attention focus shifts from the original instruction to the injected instruction in the attack data. This suggests that the separator string helps the attacker shift attention to the injected instruction, causing the LLM to perform the injected task instead of the target task.
221
+ </p>
222
+
223
+
224
+ </div>
225
+
226
+ <h2 id="proposed-approach-attention-tracker">Proposed Approach: Attention Tracker</h2>
227
+ <p> With the discover of distraction effect, we propose <strong>Attention Tracker</strong>,
228
+ a prompt injection detection method based on tracking the attention pattern on instruction. Our detection procedure is shown below:
229
+ </p>
230
+
231
+ <div class="container"><img id="attention-tracker-header" src="./figures/main.png" /></div>
232
+
233
+ <p></p>
234
+ <p>
235
+ Attention Tracker can be summarized into two phases:
236
+ </p>
237
+ <p>
238
+ <strong>(Phase 1) Finding Important Heads:</strong> In the first step, we identify specific attention head that that exhibit the distraction effect, which we termed the important heads. To find the important heads, we use a set of LLM-generated sentences with the ignore attack as the dataset.
239
+ </p>
240
+ <p>
241
+ <strong>(Phase 2) Prompt Injection Detection with Important Heads:</strong> In the second step, we feed the testing quries into the target LLM and aggregate the attention directed towards the instruction in the important heads. With this aggregated score which we call the <strong>focus score</strong>, we can effectively detect prompt injection attacks.
242
+ </p>
243
+
244
+ <p>
245
+ We provide more details about the running flow of Attention Tracker in the paper.
246
+ </p>
247
+
248
+ <h2 id="result-attention-tracker">Experiment Result</h2>
249
+ <p>
250
+ In this section, we evaluate Attention Tracker against various baselines with the AUROC score on two prompt injection detection benchmarks: Open-Prompt-Injection and deepset prompt injection dataset:
251
+ </p>
252
+ <div class="container"><img id="attention-tracker-header" src="./figures/result.png" /></div>
253
+ <p/>
254
+ <p>
255
+ As shown in the table, Attention Tracker consistently outperforms existing baselines, with an AUROC improvement of up to 3.1% on the Open-Prompt-Injection benchmark and 10.0% on the deepset prompt injection dataset. Among training-free methods, it achieves even greater gains, with an average AUROC improvement of 31.3% and 20.9% across the two datasets, respectively. Unlike LLM-based methods that rely on larger models for stability, Attention Tracker delivers robust and effective performance even with smaller LLMs, underscoring its suitability for real-world applications.
256
+ </p>
257
+ <h2 id="demonstration">Demo</h2>
258
+
259
+ <p>
260
+ We evaluated the effectiveness of the Attention Tracker by visualizing the distribution of attention aggregation for key heads across different data types (normal data vs. attack data) in the Open-Prompt-Injection dataset. Additionally, we calculated the focus score for these data samples. A higher focus score indicates a lower likelihood of prompt injection attacks. The tested model is Qwen-2 1.8b.
261
+ </p>
262
+ <div class="group-title green">Normal Data</div>
263
+
264
+ <div class="image-gallery-container normal-gallery">
265
+ <span class="arrow left-arrow" onclick="navigateImages('normal', -1)">&lt;</span>
266
+ <div class="image-gallery">
267
+ <img id="normalImage1" src="./demo_results/normal_1.png" class="active" alt="Normal Image 1">
268
+ <img id="normalImage2" src="./demo_results/normal_2.png" alt="Normal Image 2">
269
+ <img id="normalImage3" src="./demo_results/normal_3.png" alt="Normal Image 3">
270
+ <img id="normalImage4" src="./demo_results/normal_4.png" alt="Normal Image 4">
271
+ <img id="normalImage4" src="./demo_results/normal_5.png" alt="Normal Image 5">
272
+ </div>
273
+ <span class="arrow right-arrow" onclick="navigateImages('normal', 1)">&gt;</span>
274
+ </div>
275
 
276
+ <div class="group-title red">Attack Data</div>
277
+ <div class="image-gallery-container attack-gallery">
278
+ <span class="arrow left-arrow" onclick="navigateImages('attack', -1)">&lt;</span>
279
+ <div class="image-gallery">
280
+ <img id="attackImage1" src="./demo_results/attack_1.png" class="active" alt="Attack Image 1">
281
+ <img id="attackImage2" src="./demo_results/attack_2.png" alt="Attack Image 2">
282
+ <img id="attackImage3" src="./demo_results/attack_3.png" alt="Attack Image 3">
283
+ <img id="attackImage4" src="./demo_results/attack_4.png" alt="Attack Image 4">
284
+ </div>
285
+ <span class="arrow right-arrow" onclick="navigateImages('attack', 1)">&gt;</span>
286
+ </div>
287
+
288
+ <h2 id="inquiries"> Inquiries on Attention Tracker</h2>
289
+ <p> Please contact <a href="Mailto:khhung906@gmail.com">Kuo-Han Hung</a>
290
+ and <a href="Mailto:pin-yu.chen@ibm.com">Pin-Yu Chen</a>
291
+ </p>
292
+
293
+ <h2 id="citations">Citations</h2>
294
+ <p>If you find Attention Tracker helpful and useful for your research, please cite our main paper as follows:</p>
295
+
296
+ <div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>
297
+ <!-- @misc{hu2024gradient,
298
+ title={Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes},
299
+ author={Xiaomeng Hu and Pin-Yu Chen and Tsung-Yi Ho},
300
+ year={2024},
301
+ eprint={2403.00867},
302
+ archivePrefix={arXiv},
303
+ primaryClass={cs.CR} }-->
304
+ </code></pre></div>
305
+ </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
 
307
  <footer class="site-footer">
308
 
309
+ <span class="site-footer-owner">This website is maintained by <a href="https://khhung906.github.io/">Kuo-Han Hung</a></a>.</span>
310
 
311
  </footer>
312
  </main>