zaitang commited on
Commit
42d4e62
·
verified ·
1 Parent(s): 0e03fed

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +44 -56
index.html CHANGED
@@ -192,37 +192,6 @@
192
  </div>
193
  </section>
194
 
195
- <!-- Relations -->
196
- <section class="section">
197
- <div class="container is-max-desktop">
198
- <h2 class="title is-3">Neighborhood Relations of AEs and Clean Samples</h2>
199
- <div class="columns is-centered">
200
- <div class="column container-centered">
201
- <img src="./static/images/relations.jpg" alt="Neighborhood Relations of Benign Examples and AEs"/>
202
- <p>
203
- <strong>Figure 1. Neighborhood Relations of AEs and Clean Samples.</strong>
204
- </p>
205
- </div>
206
- </div>
207
- <div class="columns is-centered">
208
- <div class="column has-text-justified">
209
- <p>
210
- The previous method, Latent Neighbourhood Graph (LNG), represents the relationship between the input sample and the reference
211
- sample as a graph, whose nodes are embeddings extracted by DNN and edges are built according to distances between the input node
212
- and reference nodes, and train a graph neural network to detect AEs.
213
- </p>
214
-
215
- <p>
216
- In this work, We explore the relationship between inputs and their test-time augmented neighbours. As shown in Figure. 1,
217
- clean samples exhibit a stronger correlation with their neighbors in terms of label consistency and representation
218
- similarity. In contrast, AEs are distinctly separated from their neighbors. According to this observation, we propose <strong>BEYOND</strong>
219
- to detection adversarial examples.
220
- </p>
221
- </div>
222
- </div>
223
- </div>
224
- </section>
225
- <!-- Relations -->
226
 
227
  <!-- Overview -->
228
  <section class="section">
@@ -245,7 +214,7 @@
245
  <!-- Results -->
246
  <section class="section">
247
  <div class="container is-max-desktop">
248
- <h2 class="title is-3">Detection Performance</h2>
249
  <div class="columns is-centered">
250
  <div class="column container-centered">
251
  <table class="tg" border="1" style="width:100%;">
@@ -405,19 +374,37 @@
405
  </section>
406
  <!-- Results -->
407
 
408
- <!-- Adaptive Attack -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
409
  <section class="section">
410
 
411
  <div class="container is-max-desktop">
412
- <h2 class="title is-3">Adaptive Attack</h2>
413
 
414
  <div class="columns is-centered">
415
  <div class="column container formula">
416
  <p>
417
- Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
418
- and the detection strategy. For an SSL model with a feature extractor <i>f</i>, a projector <i>h</i>, and a classification head <i>g</i>,
419
- the classification branch can be formulated as <strong>C</strong>= <i>f</i> &deg; <i>g</i> and the representation branch as <strong>R</strong> = <i>f</i> &deg; <i>h</i>.
420
- To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
421
  </div>
422
  </div>
423
 
@@ -425,44 +412,45 @@
425
  <div class="column container-centered">
426
  <div id="adaptive-loss-formula" class="container">
427
  <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
428
- <a href=".label-loss" class="selected">Label Consistency Loss</a>
429
- <a href=".representation-loss">Representation Similarity Loss</a>
430
- <a href=".total-loss">Total Loss</a>
431
  <div style="clear: both"></div>
432
  </div>
433
  <div class="row align-items-center adaptive-loss-formula-content">
434
- <span class="formula label-loss formula-content">
435
  $$
436
  \displaystyle
437
- Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
438
  $$
439
  </span>
440
- <span class="formula representation-loss formula-content" style="display: none;">
441
  $$
442
  \displaystyle
443
- Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
444
  $$
445
  </span>
446
- <span class="formula total-loss formula-content" style="display: none;">
447
- $$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
 
 
 
448
  </span>
449
  </div>
450
- </div>
451
  </div>
452
  </div>
453
 
454
  <div class="columns is-centered">
455
  <div class="column container adaptive-loss-formula-content">
456
- <p class="formula label-loss formula-content">
457
- where k represents the number of generated neighbors, <i>y</i><sub><i>t</i></sub> is the target class, and <strong><i>L</i></strong> is the cross entropy loss function.
458
  </p>
459
- <p class="formula representation-loss formula-content" style="display: none">
460
- where k represents the number of generated neighbors, and <strong><i>S</i></strong> is the cosine similarity.
461
  </p>
462
-
463
- <p class="formula total-loss formula-content" style="display: none;">
464
- where <strong><i>L</i></strong><sub>C</sub> indicates classifier's loss function, <i>y</i><sub><i>t</i></sub> is the targeted class, and &alpha; refers to a hyperparameter,
465
- which is a trade-off parameter between label consistency and representation similarity..
466
  </p>
467
  </div>
468
  </div>
 
192
  </div>
193
  </section>
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
  <!-- Overview -->
197
  <section class="section">
 
214
  <!-- Results -->
215
  <section class="section">
216
  <div class="container is-max-desktop">
217
+ <h2 class="title is-3">GREAT Score Results</h2>
218
  <div class="columns is-centered">
219
  <div class="column container-centered">
220
  <table class="tg" border="1" style="width:100%;">
 
374
  </section>
375
  <!-- Results -->
376
 
377
+ <!-- New Figure Section -->
378
+ <section class="section">
379
+ <div class="container is-max-desktop">
380
+ <div class="columns is-centered">
381
+ <div class="column container-centered">
382
+ <div>
383
+ <img src="./static/images/new_figure_2_2.png"
384
+ class="method_overview"
385
+ alt="Comparison of local GREAT Score and CW attack"/>
386
+ <p>
387
+ <strong>Figure 2.</strong> Comparison of local GREAT Score and CW attack in L<sub>2</sub> perturbation on CIFAR-10 with Rebuffi_extra model.
388
+ The x-axis is the image id. The result shows the local GREAT Score is indeed a lower bound of the perturbation level found by CW attack.
389
+ </p>
390
+ </div>
391
+ </div>
392
+ </div>
393
+ </div>
394
+ </section>
395
+ <!-- New Figure Section -->
396
+
397
+ <!-- Robustness Certificate Definition -->
398
  <section class="section">
399
 
400
  <div class="container is-max-desktop">
401
+ <h2 class="title is-3">Robustness Certificate Definition</h2>
402
 
403
  <div class="columns is-centered">
404
  <div class="column container formula">
405
  <p>
406
+ GREAT Score is designed to evaluate the global robustness of classifiers against adversarial attacks. It uses generative models to estimate a certified lower bound on true global robustness. For a K-way classifier f, we define a local robustness score g(G(z)) for a generated sample G(z), where G is a generator and z is sampled from a standard Gaussian distribution. This score measures the confidence gap between the correct class prediction and the most likely incorrect class. The GREAT Score, defined as the expectation of g(G(z)) over z, provides a certified lower bound on the true global robustness with respect to the data distribution learned by the generative model. This approach allows us to estimate global robustness without knowing the exact data distribution or minimal perturbations for each sample.
407
+ </p>
 
 
408
  </div>
409
  </div>
410
 
 
412
  <div class="column container-centered">
413
  <div id="adaptive-loss-formula" class="container">
414
  <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
415
+ <a href=".true-global-robustness" class="selected">True Global Robustness</a>
416
+ <a href=".global-robustness-estimate">Global Robustness Estimate</a>
417
+ <a href=".local-robustness-score">Local Robustness Score</a>
418
  <div style="clear: both"></div>
419
  </div>
420
  <div class="row align-items-center adaptive-loss-formula-content">
421
+ <span class="formula true-global-robustness formula-content">
422
  $$
423
  \displaystyle
424
+ \Omega(f) = \mathbb{E}_{x\sim P}[\Delta_{min}(x)]= \int_{x \sim P} \Delta_{\min}(x) p(x)dx
425
  $$
426
  </span>
427
+ <span class="formula global-robustness-estimate formula-content" style="display: none;">
428
  $$
429
  \displaystyle
430
+ \widehat{\Omega}(f) = \mathbb{E}_{x\sim P}[g(x)]= \int_{x \sim P} g(x) p(x)dx
431
  $$
432
  </span>
433
+ <span class="formula local-robustness-score formula-content" style="display: none;">
434
+ $$
435
+ \displaystyle
436
+ g\left(G(z)\right) = \sqrt{\cfrac{\pi}{2}} \cdot \max\{ f_c(G(z)) - \max_{k \in \{1,\ldots,K\},k\neq c} f_k(G(z)),0 \}
437
+ $$
438
  </span>
439
  </div>
440
+ </div>
441
  </div>
442
  </div>
443
 
444
  <div class="columns is-centered">
445
  <div class="column container adaptive-loss-formula-content">
446
+ <p class="formula true-global-robustness formula-content">
447
+ where f is a classifier, P is a data distribution, and Δ<sub>min</sub>(x) is the minimal perturbation for a sample x.
448
  </p>
449
+ <p class="formula global-robustness-estimate formula-content" style="display: none">
450
+ where g(x) is a local robustness statistic, and this estimate is used when the exact probability density function of P and local minimal perturbations are unknown.
451
  </p>
452
+ <p class="formula local-robustness-score formula-content" style="display: none;">
453
+ where G(z) is a generated data sample, f<sub>c</sub> is the confidence score for the correct class c, and f<sub>k</sub> are the confidence scores for other classes.
 
 
454
  </p>
455
  </div>
456
  </div>