allenhzy commited on
Commit
a0a9740
·
1 Parent(s): 773645f
Files changed (1) hide show
  1. index.html +12 -12
index.html CHANGED
@@ -39,7 +39,7 @@
39
  e.preventDefault();
40
  if (!$(this).hasClass('selected')) {
41
 
42
- $('.adaptive-loss-formula-content > .formula').hide(200);
43
  $('.formula-list > a').removeClass('selected');
44
  $(this).addClass('selected');
45
  var target = $(this).attr('href');
@@ -420,8 +420,8 @@
420
  <div class="column container formula">
421
  <p>
422
  Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
423
- and the detection strategy. For an SSL model with a feature extractor $$f$$, a projector $h$, and a classification head $g$,
424
- the classification branch can be formulated as $$\mathbb{C} = f\circ g$$ and the representation branch as $$\mathbb{R} = f\circ h$$.
425
  To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
426
  </div>
427
  </div>
@@ -436,19 +436,19 @@
436
  <div style="clear: both"></div>
437
  </div>
438
  <div class="row align-items-center adaptive-loss-formula-content>
439
- <span class="formula label-loss" style="">
440
  $$
441
  \displaystyle
442
  Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
443
  $$
444
  </span>
445
- <span class="formula representation-loss" style="display: none;">
446
  $$
447
  \displaystyle
448
  Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
449
  $$
450
  </span>
451
- <span class="formula total-loss" style="display: none;">
452
  $$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
453
  </span>
454
  </div>
@@ -458,15 +458,15 @@
458
 
459
  <div class="columns is-centered">
460
  <div class="column container adaptive-loss-formula-content">
461
- <p class="formula label-loss">
462
- where $$k$$ represents the number of generated neighbors, $$y_t$$ is the target class, and $$\mathcal{L}$$ is the cross entropy loss function.
463
  </p>
464
- <p class="formula representation-loss" style="display: none">
465
- where $$\mathcal{S}$$ is the cosine similarity.
466
  </p>
467
 
468
- <p class="formula total-loss" style="display: none;">
469
- where $$\mathcal{L}_C$$ indicates classifier's loss function, $y_t$ is the targeted class, and $\alpha$ refers to a hyperparameter.
470
  </p>
471
  </div>
472
  </div>
 
39
  e.preventDefault();
40
  if (!$(this).hasClass('selected')) {
41
 
42
+ $('.formula-content').hide(200);
43
  $('.formula-list > a').removeClass('selected');
44
  $(this).addClass('selected');
45
  var target = $(this).attr('href');
 
420
  <div class="column container formula">
421
  <p>
422
  Attackers can design adaptive attacks to try to bypass BEYOND when the attacker knows all the parameters of the model
423
+ and the detection strategy. For an SSL model with a feature extractor `f`, a projector `h`, and a classification head `g`,
424
+ the classification branch can be formulated as `\mathbb{C} = f\circ g` and the representation branch as `\mathbb{R} = f\circ h`.
425
  To attack effectively, the adversary must deceive the target model while guaranteeing the label consistency and representation similarity of the SSL model.
426
  </div>
427
  </div>
 
436
  <div style="clear: both"></div>
437
  </div>
438
  <div class="row align-items-center adaptive-loss-formula-content>
439
+ <span class="formula label-loss formula-content" style="">
440
  $$
441
  \displaystyle
442
  Loss_{label} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{L}\left(\mathbb{C}\left(W^i(x+\delta) \right), y_t\right)
443
  $$
444
  </span>
445
+ <span class="formula representation-loss formula-content" style="display: none;">
446
  $$
447
  \displaystyle
448
  Loss_{repre} = \frac{1}{k} \sum_{i=1}^{k}\mathcal{S}(\mathbb{R}(W^i(x+\delta)), \mathbb{R}(x+\delta))
449
  $$
450
  </span>
451
+ <span class="formula total-loss formula-content" style="display: none;">
452
  $$\displaystyle \mathcal{L}_C(x+\delta, y_t) + Loss_{label} - \alpha \cdot Loss_{repre}$$
453
  </span>
454
  </div>
 
458
 
459
  <div class="columns is-centered">
460
  <div class="column container adaptive-loss-formula-content">
461
+ <p class="formula label-loss formula-content">
462
+ where `k` represents the number of generated neighbors, `y_t` is the target class, and `\mathcal{L}` is the cross entropy loss function.
463
  </p>
464
+ <p class="formula representation-loss formula-content" style="display: none">
465
+ where `k` represents the number of generated neighbors, and `mathcal{S}` is the cosine similarity.
466
  </p>
467
 
468
+ <p class="formula total-loss formula-content" style="display: none;">
469
+ where `\mathcal{L}_C` indicates classifier's loss function, `y_t` is the targeted class, and `\alpha` refers to a hyperparameter.
470
  </p>
471
  </div>
472
  </div>