Spaces:
Running
Running
File size: 27,123 Bytes
e83d3d6 051178e e83d3d6 051178e e83d3d6 1a23e33 e83d3d6 caaf80c e83d3d6 344407b 93ef4d5 195942f 1a87ac9 93ef4d5 f6cc227 d17ac5b 50238de f6cc227 4817884 a0a9740 f6cc227 75fab0b ec73a31 c5fd5e5 ec73a31 c5fd5e5 ec73a31 d17ac5b f6cc227 344407b e83d3d6 051178e e83d3d6 4d22a83 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 4d22a83 e83d3d6 4d22a83 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 5366905 e83d3d6 051178e 4d22a83 5366905 e83d3d6 ae66a58 b19c065 ae66a58 82fd2c3 ae66a58 eade1a5 051178e ae66a58 b19c065 e83d3d6 b19c065 f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e 82fd2c3 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 051178e f4a2536 82fd2c3 f4a2536 82fd2c3 f4a2536 82fd2c3 f4a2536 051178e f4a2536 344407b b1be04f 42d4e62 75fab0b b19c065 b1be04f e83d3d6 4d22a83 5366905 e83d3d6 42805da e83d3d6 42805da e83d3d6 0e03fed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description"
content="Demo Page of Retention Score AAAI 2025.">
<meta name="keywords" content="Retention Score, Adversarial robustness, Generative models, Vision-Language Models">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Retention Score: Quantifying Jailbreak Risks for Vision Language Models</title>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="stylesheet" href="./static/css/custom.css">
<link rel="icon" href="./static/images/favicon.svg">
<!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> -->
<script src="https://code.jquery.com/jquery-3.6.0.js"></script>
<script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
<!-- for mathjax support -->
<!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> -->
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script>
$(document).ready(function(){
$('#adaptive-loss-formula-list').on('click', 'a', function(e) {
e.preventDefault();
if (!$(this).hasClass('selected')) {
$('.formula-content').hide(200);
$('.formula-list > a').removeClass('selected');
$(this).addClass('selected');
var target = $(this).attr('href');
$(target).show(200);
}
});
$('#adaptive-dataset').on('click', 'a', function(e) {
e.preventDefault();
if (!$(this).hasClass('selected')) {
$('.interpolation-video-column').hide();
$('#adaptive-dataset > a').removeClass('selected');
$(this).addClass('selected');
var target = $(this).attr('href');
$(target).show();
}
});
})
</script>
<style type="text/css">
.tg {border-collapse:collapse;border-spacing:0;}
.tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
overflow:hidden;padding:10px 5px;word-break:normal;}
.tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
.tg .tg-baqh{text-align:center;vertical-align:top}
.tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
.tg .tg-2imo{font-style:italic;text-align:center;text-decoration:underline;vertical-align:top}
</style>
</head>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Retention Score: Quantifying Jailbreak Risks for Vision Language Models</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="#" target="_blank">ZAITANG LI</a><sup>1</sup>,</span>
<span class="author-block">
<a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://tsungyiho.github.io/" target="_blank">Tsung-Yi Ho</a><sup>1</sup>,
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>The Chinese University of Hong Kong,</span>
<span class="author-block"><sup>2</sup>IBM Research</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://arxiv.org/abs/2304.09875" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2304.09875" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- Video Link. -->
<!-- <span class="link-block">
<a href="https://www.youtube.com/watch?v=MrKrnHhk8IA" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
<!-- Code Link. -->
<!-- <span class="link-block">
<a href="https://github.com/google/nerfies" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- <section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<video id="teaser" autoplay muted loop playsinline height="100%">
<source src="./static/videos/teaser.mp4"
type="video/mp4">
</video>
<h2 class="subtitle has-text-centered">
<span class="dnerf">Nerfies</span> turns selfie videos from your phone into
free-viewpoint
portraits.
</h2>
</div>
</div>
</section> -->
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
The emergence of Vision-Language Models (VLMs) is significant advancement in integrating computer vision with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities. However, this progress has made VLMs vulnerable to advanced adversarial attacks, raising concerns about reliability. Objective of this paper is to assess resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs. To evaluate VLM's ability to maintain robustness against adversarial input perturbations, we propose novel metric called \textbf{Retention Score}. Retention Score is multi-modal evaluation metric that includes Retention-I and Retention-T scores for quantifying jailbreak risks in visual and textual components of VLMs. Our process involves generating synthetic image-text pairs using conditional diffusion model. These pairs are then predicted for toxicity score by VLM alongside toxicity judgment classifier. By calculating margin in toxicity scores, we can quantify robustness of VLM in attack-agnostic manner. Our work has four main contributions. First, we prove that Retention Score can serve as certified robustness metric. Second, we demonstrate that most VLMs with visual components are less robust against jailbreak attacks than corresponding plain VLMs. Additionally, we evaluate black-box VLM APIs and find that security settings in Google Gemini significantly affect score and robustness. Moreover, robustness of GPT4V is similar to medium settings of Gemini. Finally, our approach offers time-efficient alternative to existing adversarial attack methods and provides consistent model robustness rankings when evaluated on VLMs including MiniGPT-4, InstructBLIP, and LLaVA.
</p>
</div>
<!-- References -->
<div class="content">
<p>
<sup>1</sup> Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., & Hein, M. (2021). RobustBench: a standardized adversarial robustness benchmark. In <i>Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)</i>. <a href="https://openreview.net/forum?id=SSKZPJCt7B" target="_blank">https://openreview.net/forum?id=SSKZPJCt7B</a>
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<!-- Overview -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Method Overview of GREAT Score</h2>
<div class="columns is-centered">
<div class="column container-centered">
<img src="./static/images/method.png" alt="Method Overview of Retention Score"/>
<p><strong>Flow chart of calculating Retention-Image and Retention-Text scores for VLMs. Given some evaluation samples, we first use diffusion generators to create semantically similar synthetic samples. Then, we pass the generated samples into a VLM to get responses and further use a toxicity judgment model (e.g., Perspective API \textsuperscript{1} or an LLM like Llama-70B (Touvron et al. 2023)) for toxicity level predictions. Finally, we use these statistics to compute the Retention Score as detailed in Section 3.2.</p>
</div>
</div>
</div>
</section>
<!-- Overview -->
<!-- Robustness Certificate Definition -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Establishing the Retention Score Framework</h2>
<div class="columns is-centered">
<div class="column container formula">
<p>
Revisiting concepts introduced earlier, minimal perturbations for Image-Text pair in context of VLMs were established. We proposed that greater values of minimal perturbations correlate with enhanced local robustness of model M for pair (I, T). Consequently, estimating lower bounds for these minimal perturbations provides measure of VLMs' robustness. To quantify robustness, we introduce Retention Score, which aims to provide assessment of VLM resilience against input perturbations. Higher Retention Scores signify model's inherent robustness, indicative of safeguards against adversarial toxicity manipulation. Retention Score is multimodal measure capable of assessing conditional robustness of VLMs across visual, textual domains, further divided into Retention-Image (Retention-I) and Retention-Text (Retention-T) scores.
</p>
</div>
</div>
<div class="columns is-centered">
<div class="column container-centered">
<div id="adaptive-loss-formula" class="container">
<div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
<a href=".retention-image" class="selected">Retention-Image Score</a>
<a href=".retention-text">Retention-Text Score</a>
<div style="clear: both"></div>
</div>
<div class="row align-items-center adaptive-loss-formula-content">
<span class="formula retention-image formula-content">
$$
\begin{align}
g_I(M,G_I(z|I), T) &= \sqrt{\frac{\pi}{2}} \cdot \{ M_{nt}(G_I(z|I), T) - M_t(G_I(z|I), T) \}^{+} \\
R_I(M, I, \mathbb{X}) &= \frac{1}{m \cdot n} \sum_{j=1}^m \sum_{i=1}^n g_I(M,G_I(z_i|I), T_j))
\end{align}
$$
</span>
<span class="formula retention-text formula-content" style="display: none;">
$$
\begin{align}
g_T(M,I, s(G_T(z|T))) &= \sqrt{\frac{\pi}{2}} \cdot \{ M_{nt}(I, \psi(s(G_T(z|T)))) - M_t(I, \psi(s(G_T(z|T)))) \}^{+} \\
R_T(M, I,\mathbb{X}) &= \frac{1}{m \cdot n} \sum_{j=1}^m \sum_{i=1}^n g_T(M,I, \psi(s(G_T(z_i|T_j))))
\end{align}
$$
</span>
</div>
</div>
</div>
</div>
<div class="columns is-centered">
<div class="column container adaptive-loss-formula-content">
<p class="formula retention-image formula-content">
where G_I(z|I) is a continuous diffusion-based image generation model that synthesizes semantically similar images to I, given a zero-mean isotropic Gaussian-distributed input z. The local score function g_I evaluates the non-toxicity of the generated image associated with the given prompt T.
</p>
<p class="formula retention-text formula-content" style="display: none;">
where G_T(z|T) refers to a text generator founded on paraphrasing diffusion techniques, s and ψ represent semantic encoder and decoder that translate discrete textual information into continuous vectorial representation and vice versa.
</p>
</div>
</div>
</div>
</section>
<!-- Results -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Retention Image Score Results</h2>
<div class="columns is-centered">
<div class="column container-centered">
<table class="tg" border="1" style="width:100%;">
<caption><strong>Table 1.</strong> Jailbreak risk evaluation of VLMs to image attacks. This table presents a comparison among three VLMs — MiniGPT-4, LLaVA, and InstructBLIP — with regards to their Retention Scores (Retention-I), and Attack Success Rates (ASR, calculated as the percentage of outputs displaying toxic attributes).</caption>
<thead>
<tr>
<th class="tg-amwm"></th>
<th class="tg-baqh" colspan="2">MiniGPT-4</th>
<th class="tg-baqh" colspan="2">LLaVA</th>
<th class="tg-baqh" colspan="2">InstructBLIP</th>
</tr>
<tr>
<th class="tg-amwm"></th>
<th class="tg-baqh">Retention-I</th>
<th class="tg-baqh">ASR (%)</th>
<th class="tg-baqh">Retention-I</th>
<th class="tg-baqh">ASR (%)</th>
<th class="tg-baqh">Retention-I</th>
<th class="tg-baqh">ASR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-baqh">Young</td>
<td class="tg-baqh">0.6121</td>
<td class="tg-baqh">40.93</td>
<td class="tg-baqh">0.2866</td>
<td class="tg-baqh">58.86</td>
<td class="tg-baqh">0.5043</td>
<td class="tg-baqh">49.72</td>
</tr>
<tr>
<td class="tg-baqh">Old</td>
<td class="tg-baqh">0.5917</td>
<td class="tg-baqh">43.27</td>
<td class="tg-baqh">0.2636</td>
<td class="tg-baqh">64.71</td>
<td class="tg-baqh">0.5650</td>
<td class="tg-baqh">47.76</td>
</tr>
<tr>
<td class="tg-baqh">Woman</td>
<td class="tg-baqh">0.5621</td>
<td class="tg-baqh">42.12</td>
<td class="tg-baqh">0.2261</td>
<td class="tg-baqh">57.70</td>
<td class="tg-baqh">0.4861</td>
<td class="tg-baqh">52.00</td>
</tr>
<tr>
<td class="tg-baqh">Man</td>
<td class="tg-baqh">0.5438</td>
<td class="tg-baqh">42.63</td>
<td class="tg-baqh">0.1971</td>
<td class="tg-baqh">52.16</td>
<td class="tg-baqh">0.4966</td>
<td class="tg-baqh">50.36</td>
</tr>
<tr>
<td class="tg-baqh">Average</td>
<td class="tg-baqh">0.5774</td>
<td class="tg-baqh">42.49</td>
<td class="tg-baqh">0.2434</td>
<td class="tg-baqh">58.36</td>
<td class="tg-baqh">0.5130</td>
<td class="tg-baqh">49.96</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</section>
<!-- Results -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Retention Text Score Results</h2>
<div class="columns is-centered">
<div class="column container-centered">
<table class="tg" border="1" style="width:100%;">
<caption><strong>Table 2.</strong> Jailbreak risk evaluation of VLMs to text attacks. This table presents a comparison among three VLMs — MiniGPT-4, LLaVA, and InstructBLIP — with regards to their Retention Scores (Retention-T), Attack Success Rates.</caption>
<thead>
<tr>
<th class="tg-amwm">VLM</th>
<th class="tg-baqh">Retention-T</th>
<th class="tg-baqh">Attack Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-baqh">MiniGPT-4</td>
<td class="tg-baqh">0.2073</td>
<td class="tg-baqh">46.1%</td>
</tr>
<tr>
<td class="tg-baqh">LLaVA</td>
<td class="tg-baqh">0.342</td>
<td class="tg-baqh">9.4%</td>
</tr>
<tr>
<td class="tg-baqh">InstructBLIP</td>
<td class="tg-baqh">0.164</td>
<td class="tg-baqh">84.5%</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</section>
<!-- Model Ranking Comparison Section -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">API Model Analysis</h2>
<div class="columns is-centered">
<div class="column is-full-width">
<div class="content has-text-justified">
<p>
Assessing the robustness of black-box VLMs is of paramount importance, particularly since these models are commonly deployed as APIs, restricting users and auditors to inferential interactions. This constraint not only makes adversarial attacks challenging but also underscores the necessity for robust evaluation methods that do not depend on internal model access. In this context, our research deploys the Retention-I score to examine the resilience of APIs against synthetically produced facial images with concealed attributes, which are typically employed in model inferences.
</p>
<p>
Our evaluation methodology was applied to two prominent online vision language APIs: GPT-4V and Gemini Pro Vision. Noteworthy is that for Gemini Pro Vision, the API provides settings to adjust the model's threshold for blocking harmful content, with options ranging from blocking none to most (none, few, some, and most). We tested this feature by running identical prompts and images across these settings, leading to an evaluation of five model configurations.
</p>
<p>
The assessment centered around the Retention-I score, using a balanced set of synthetic faces that included young, old, male, and female groups. These images were generated using the state-of-the-art Stable Diffusion model, with each group contributing 100 images. A unique aspect of Google's Gemini is its error messaging system, which, in lieu of producing toxic outputs, provides rationales for prompt blocking. In our study, such blocks were interpreted as a zero toxicity score, aligning with the model's safeguarding strategy.
</p>
<table class="table is-bordered is-striped is-narrow is-hoverable is-fullwidth">
<caption><strong>Table 3.</strong> Retention-I analysis of VLM APIs. Each group consists of 100 images with 20 continuation prompts.</caption>
<thead>
<tr>
<th></th>
<th>Young</th>
<th>Old</th>
<th>Woman</th>
<th>Man</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-4v</td>
<td>1.2043</td>
<td>1.2077</td>
<td>1.2067</td>
<td>1.2052</td>
<td>1.2059</td>
</tr>
<tr>
<td>Gemini-None</td>
<td>0.3025</td>
<td>0.2432</td>
<td>0.2300</td>
<td>0.2126</td>
<td>0.2471</td>
</tr>
<tr>
<td>Gemini-Few</td>
<td>1.1955</td>
<td>1.1806</td>
<td>1.1972</td>
<td>1.1987</td>
<td>1.1930</td>
</tr>
<tr>
<td>Gemini-Some</td>
<td>1.2322</td>
<td>1.2486</td>
<td>1.2325</td>
<td>1.2382</td>
<td>1.2379</td>
</tr>
<tr>
<td>Gemini-Most</td>
<td>1.2449</td>
<td>1.2494</td>
<td>1.2388</td>
<td>1.2479</td>
<td>1.2453</td>
</tr>
</tbody>
</table>
<p>
Our results in Table 3 reveal intriguing variations across different APIs. For instance, Gemini-None exhibited notable performance contrasts when comparing Old versus Young cohorts. Other models showcased more uniform robustness levels across demographic groups. Also, Our analysis positions the robustness of GPT-4V somewhere between the some and most safety settings of Gemini. This correlation not only validates the efficacy of Gemini's protective configurations but also underscores the impact of safety thresholds on toxicity recognition, as quantified by our scoring method.
</p>
<p>
This robustness evaluation illustrates that Retention-I is a pivotal tool for analyzing group-level resilience in models with restricted access, enabling discreet and efficacious scrutiny of their defenses.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- Model Ranking Comparison Section -->
<!-- GREAT Score vs CW Attack Comparison Section -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">GREAT Score vs CW Attack Comparison</h2>
<div class="columns is-centered">
<div class="column container-centered">
<div>
<img src="./static/images/new_figure_2_2.png"
class="method_overview"
alt="Comparison of local GREAT Score and CW attack"/>
<p>
<strong>Figure 2.</strong> Comparison of local GREAT Score and CW attack in L<sub>2</sub> perturbation on CIFAR-10 with Rebuffi_extra model.
The x-axis is the image id. The result shows the local GREAT Score is indeed a lower bound of the perturbation level found by CW attack.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- GREAT Score vs CW Attack Comparison Section -->
<!-- Run-time Analysis Section -->
<section class="section">
<div class="container is-max-desktop">
<h2 class="title is-3">Run-time Analysis</h2>
<div class="columns is-centered">
<div class="column container-centered">
<div>
<img src="./static/images/plot1.png"
class="method_overview"
alt="Run-time improvement comparison"/>
<p>
<strong>Figure 4.</strong> Run-time improvement (Retention Score over Visual and Text attacks).
</p>
<div class="content has-text-justified">
<p>
Figure 4 compares the run-time efficiency of Retention Score over adversarial attacks in [1] and [2].
We show the improvement ratio of their average per-sample run-time (wall clock time of Retention Score/Adversarial Attack is reported in Appendix)
and observe around 2-30 times improvement, validating the computational efficiency of Retention Score.
</p>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Run-time Analysis Section -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@article{li2024greatscore,
title = {GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models},
author = {Zaitang, Li and Pin-Yu, Chen and Tsung-Yi, Ho},
journal = {NeurIPS},
year = {2024},
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<!-- <div class="content has-text-centered">
<a class="icon-link" target="_blank"
href="./static/videos/nerfies_paper.pdf">
<i class="fas fa-file-pdf"></i>
</a>
<a class="icon-link" href="https://github.com/keunhong" target="_blank" class="external-link" disabled>
<i class="fab fa-github"></i>
</a>
</div> -->
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is licensed under a <a rel="license" target="_blank"
href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
<p>
This means you are free to borrow the <a target="_blank"
href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
we just ask that you link back to this page in the footer.
Please remember to remove the analytics code included in the header of the website which
you do not want on your website.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>
|