File size: 27,123 Bytes
e83d3d6
 
 
 
 
051178e
 
e83d3d6
051178e
e83d3d6
 
 
 
 
 
 
 
 
 
 
1a23e33
e83d3d6
 
caaf80c
 
 
e83d3d6
 
 
 
344407b
93ef4d5
195942f
1a87ac9
93ef4d5
f6cc227
d17ac5b
50238de
f6cc227
 
4817884
a0a9740
f6cc227
 
 
 
 
 
75fab0b
ec73a31
 
 
 
 
c5fd5e5
ec73a31
 
 
c5fd5e5
ec73a31
 
 
d17ac5b
f6cc227
 
344407b
 
 
 
 
 
 
 
 
 
e83d3d6
 
 
 
 
 
 
 
051178e
e83d3d6
 
4d22a83
e83d3d6
5366905
e83d3d6
 
5366905
e83d3d6
 
 
 
5366905
 
e83d3d6
 
 
 
 
 
4d22a83
e83d3d6
 
 
 
 
 
 
 
4d22a83
e83d3d6
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
051178e
4d22a83
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
ae66a58
b19c065
ae66a58
 
82fd2c3
ae66a58
eade1a5
051178e
 
ae66a58
 
 
 
b19c065
e83d3d6
b19c065
f4a2536
 
 
 
 
051178e
f4a2536
 
 
 
051178e
f4a2536
 
 
 
 
 
 
 
051178e
 
f4a2536
 
 
051178e
f4a2536
051178e
 
 
 
f4a2536
 
051178e
f4a2536
051178e
 
 
 
f4a2536
 
 
 
 
 
 
 
 
051178e
 
f4a2536
051178e
 
f4a2536
 
 
051178e
 
82fd2c3
 
 
 
 
 
051178e
82fd2c3
 
 
051178e
82fd2c3
 
051178e
 
 
 
82fd2c3
 
051178e
 
 
 
 
 
 
82fd2c3
051178e
 
82fd2c3
051178e
 
 
 
 
 
 
82fd2c3
 
051178e
 
 
 
 
 
 
82fd2c3
 
051178e
 
 
 
 
 
 
82fd2c3
 
051178e
 
 
 
 
 
 
82fd2c3
 
051178e
 
 
 
 
 
 
82fd2c3
051178e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82fd2c3
051178e
 
 
82fd2c3
051178e
 
82fd2c3
051178e
 
 
82fd2c3
 
051178e
 
 
82fd2c3
 
051178e
 
 
82fd2c3
 
051178e
82fd2c3
 
 
 
 
051178e
 
 
 
 
 
 
 
 
 
82fd2c3
 
 
051178e
f4a2536
 
 
051178e
 
 
 
 
 
 
 
 
 
 
 
f4a2536
051178e
f4a2536
 
 
051178e
 
 
 
 
f4a2536
 
 
 
051178e
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a2536
 
051178e
 
 
 
 
 
f4a2536
 
051178e
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a2536
 
 
051178e
f4a2536
051178e
 
 
 
 
f4a2536
 
 
 
82fd2c3
 
 
f4a2536
82fd2c3
 
 
 
f4a2536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82fd2c3
f4a2536
051178e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a2536
 
344407b
b1be04f
42d4e62
75fab0b
 
b19c065
b1be04f
 
 
 
 
e83d3d6
 
 
4d22a83
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
42805da
e83d3d6
 
 
 
 
 
 
42805da
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e03fed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description"
        content="Demo Page of Retention Score  AAAI 2025.">
  <meta name="keywords" content="Retention Score, Adversarial robustness, Generative models, Vision-Language Models">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>Retention Score: Quantifying Jailbreak Risks for Vision Language Models</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
        rel="stylesheet">

  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet"
        href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="stylesheet" href="./static/css/custom.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <!-- <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> -->
  <script src="https://code.jquery.com/jquery-3.6.0.js"></script>
  <script src="https://code.jquery.com/ui/1.13.2/jquery-ui.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>

  <!-- for mathjax support -->
  <!-- <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script> -->
  <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>

  <script>
  $(document).ready(function(){
    $('#adaptive-loss-formula-list').on('click', 'a', function(e) {
        e.preventDefault();
        if (!$(this).hasClass('selected')) {

            $('.formula-content').hide(200);
            $('.formula-list > a').removeClass('selected');
            $(this).addClass('selected');
            var target = $(this).attr('href');
            $(target).show(200);
        }
    });


    $('#adaptive-dataset').on('click', 'a', function(e) {
        e.preventDefault();
        if (!$(this).hasClass('selected')) {

            $('.interpolation-video-column').hide();
            $('#adaptive-dataset > a').removeClass('selected');
            $(this).addClass('selected');
            var target = $(this).attr('href');
            $(target).show();
        }
    });

  })
  </script>

  <style type="text/css">
    .tg  {border-collapse:collapse;border-spacing:0;}
    .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
      overflow:hidden;padding:10px 5px;word-break:normal;}
    .tg th{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
      font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;}
    .tg .tg-baqh{text-align:center;vertical-align:top}
    .tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top}
    .tg .tg-2imo{font-style:italic;text-align:center;text-decoration:underline;vertical-align:top}
    </style>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">Retention Score: Quantifying Jailbreak Risks for Vision Language Models</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">
              <a href="#" target="_blank">ZAITANG LI</a><sup>1</sup>,</span>
            <span class="author-block">
              <a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>2</sup>,
            </span>
            <span class="author-block">
              <a href="https://tsungyiho.github.io/" target="_blank">Tsung-Yi Ho</a><sup>1</sup>,
            </span>
          </div>

          <div class="is-size-5 publication-authors">
            <span class="author-block"><sup>1</sup>The Chinese University of Hong Kong,</span>
            <span class="author-block"><sup>2</sup>IBM Research</span>
          </div>

          <div class="column has-text-centered">
            <div class="publication-links">
              <!-- PDF Link. -->
              <span class="link-block">
                <a href="https://arxiv.org/abs/2304.09875" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fas fa-file-pdf"></i>
                  </span>
                  <span>Paper</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://arxiv.org/abs/2304.09875" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="ai ai-arxiv"></i>
                  </span>
                  <span>arXiv</span>
                </a>
              </span>
              <!-- Video Link. -->
              <!-- <span class="link-block">
                <a href="https://www.youtube.com/watch?v=MrKrnHhk8IA" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-youtube"></i>
                  </span>
                  <span>Video</span>
                </a>
              </span> -->
              <!-- Code Link. -->
              <!-- <span class="link-block">
                <a href="https://github.com/google/nerfies" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-github"></i>
                  </span>
                  <span>Code</span>
                  </a>
              </span> -->
            </div>

          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<!-- <section class="hero teaser">
  <div class="container is-max-desktop">
    <div class="hero-body">
      <video id="teaser" autoplay muted loop playsinline height="100%">
        <source src="./static/videos/teaser.mp4"
                type="video/mp4">
      </video>
      <h2 class="subtitle has-text-centered">
        <span class="dnerf">Nerfies</span> turns selfie videos from your phone into
        free-viewpoint
        portraits.
      </h2>
    </div>
  </div>
</section> -->



<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Abstract</h2>
        <div class="content has-text-justified">
          <p>
            The emergence of Vision-Language Models (VLMs) is significant advancement in integrating computer vision with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities. However, this progress has made VLMs vulnerable to advanced adversarial attacks, raising concerns about reliability. Objective of this paper is to assess resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs. To evaluate VLM's ability to maintain robustness against adversarial input perturbations, we propose novel metric called \textbf{Retention Score}. Retention Score is multi-modal evaluation metric that includes Retention-I and Retention-T scores for quantifying jailbreak risks in visual and textual components of VLMs. Our process involves generating synthetic image-text pairs using conditional diffusion model. These pairs are then predicted for toxicity score by VLM alongside toxicity judgment classifier. By calculating margin in toxicity scores, we can quantify robustness of VLM in attack-agnostic manner. Our work has four main contributions. First, we prove that Retention Score can serve as certified robustness metric. Second, we demonstrate that most VLMs with visual components are less robust against jailbreak attacks than corresponding plain VLMs. Additionally, we evaluate black-box VLM APIs and find that security settings in Google Gemini significantly affect score and robustness. Moreover, robustness of GPT4V is similar to medium settings of Gemini. Finally, our approach offers time-efficient alternative to existing adversarial attack methods and provides consistent model robustness rankings when evaluated on VLMs including MiniGPT-4, InstructBLIP, and LLaVA.
          </p>
        </div>

        <!-- References -->
        <div class="content">
          <p>
            <sup>1</sup> Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., & Hein, M. (2021). RobustBench: a standardized adversarial robustness benchmark. In <i>Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)</i>. <a href="https://openreview.net/forum?id=SSKZPJCt7B" target="_blank">https://openreview.net/forum?id=SSKZPJCt7B</a>
          </p>
        </div>
      </div>
    </div>
    <!--/ Abstract. -->
  </div>
</section>


<!-- Overview -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">Method Overview of GREAT Score</h2>
    <div class="columns is-centered">
      <div class="column container-centered">
        <img src="./static/images/method.png" alt="Method Overview of Retention Score"/>
        <p><strong>Flow chart of calculating Retention-Image and Retention-Text scores for VLMs. Given some evaluation samples, we first use diffusion generators to create semantically similar synthetic samples. Then, we pass the generated samples into a VLM to get responses and further use a toxicity judgment model (e.g., Perspective API \textsuperscript{1} or an LLM like Llama-70B (Touvron et al. 2023)) for toxicity level predictions. Finally, we use these statistics to compute the Retention Score as detailed in Section 3.2.</p>
      </div>
    </div>
  </div>
</section>
<!-- Overview -->




<!-- Robustness Certificate Definition -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">Establishing the Retention Score Framework</h2>

    <div class="columns is-centered">
      <div class="column container formula">
        <p>
          Revisiting concepts introduced earlier, minimal perturbations for Image-Text pair in context of VLMs were established. We proposed that greater values of minimal perturbations correlate with enhanced local robustness of model M for pair (I, T). Consequently, estimating lower bounds for these minimal perturbations provides measure of VLMs' robustness. To quantify robustness, we introduce Retention Score, which aims to provide assessment of VLM resilience against input perturbations. Higher Retention Scores signify model's inherent robustness, indicative of safeguards against adversarial toxicity manipulation. Retention Score is multimodal measure capable of assessing conditional robustness of VLMs across visual, textual domains, further divided into Retention-Image (Retention-I) and Retention-Text (Retention-T) scores.
        </p>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column container-centered">
        <div id="adaptive-loss-formula" class="container">
          <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
            <a href=".retention-image" class="selected">Retention-Image Score</a>
            <a href=".retention-text">Retention-Text Score</a>
            <div style="clear: both"></div>
          </div>
          <div class="row align-items-center adaptive-loss-formula-content">
            <span class="formula retention-image formula-content">
              $$
              \begin{align}
              g_I(M,G_I(z|I), T) &= \sqrt{\frac{\pi}{2}} \cdot \{ M_{nt}(G_I(z|I), T) - M_t(G_I(z|I), T) \}^{+} \\
              R_I(M, I, \mathbb{X}) &= \frac{1}{m \cdot n} \sum_{j=1}^m \sum_{i=1}^n g_I(M,G_I(z_i|I), T_j))
              \end{align}
              $$
            </span>
            <span class="formula retention-text formula-content" style="display: none;">
              $$
              \begin{align}
              g_T(M,I, s(G_T(z|T))) &= \sqrt{\frac{\pi}{2}} \cdot \{ M_{nt}(I, \psi(s(G_T(z|T)))) - M_t(I, \psi(s(G_T(z|T)))) \}^{+} \\
              R_T(M, I,\mathbb{X}) &= \frac{1}{m \cdot n} \sum_{j=1}^m \sum_{i=1}^n g_T(M,I, \psi(s(G_T(z_i|T_j))))
              \end{align}
              $$
            </span>
          </div>
        </div>
      </div>
    </div>

    <div class="columns is-centered">
      <div class="column container adaptive-loss-formula-content">
        <p class="formula retention-image formula-content">
          where G_I(z|I) is a continuous diffusion-based image generation model that synthesizes semantically similar images to I, given a zero-mean isotropic Gaussian-distributed input z. The local score function g_I evaluates the non-toxicity of the generated image associated with the given prompt T.
        </p>
        <p class="formula retention-text formula-content" style="display: none;">
          where G_T(z|T) refers to a text generator founded on paraphrasing diffusion techniques, s and ψ represent semantic encoder and decoder that translate discrete textual information into continuous vectorial representation and vice versa.
        </p>
      </div>
    </div>
  </div>
</section>



  <!-- Results -->
  <section class="section">
    <div class="container is-max-desktop">
      <h2 class="title is-3">Retention Image Score Results</h2>
      <div class="columns is-centered">
        <div class="column container-centered">
          <table class="tg" border="1" style="width:100%;">
            <caption><strong>Table 1.</strong> Jailbreak risk evaluation of VLMs to image attacks. This table presents a comparison among three VLMs — MiniGPT-4, LLaVA, and InstructBLIP — with regards to their Retention Scores (Retention-I), and Attack Success Rates (ASR, calculated as the percentage of outputs displaying toxic attributes).</caption>
            <thead>
              <tr>
                <th class="tg-amwm"></th>
                <th class="tg-baqh" colspan="2">MiniGPT-4</th>
                <th class="tg-baqh" colspan="2">LLaVA</th>
                <th class="tg-baqh" colspan="2">InstructBLIP</th>
              </tr>
              <tr>
                <th class="tg-amwm"></th>
                <th class="tg-baqh">Retention-I</th>
                <th class="tg-baqh">ASR (%)</th>
                <th class="tg-baqh">Retention-I</th>
                <th class="tg-baqh">ASR (%)</th>
                <th class="tg-baqh">Retention-I</th>
                <th class="tg-baqh">ASR (%)</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="tg-baqh">Young</td>
                <td class="tg-baqh">0.6121</td>
                <td class="tg-baqh">40.93</td>
                <td class="tg-baqh">0.2866</td>
                <td class="tg-baqh">58.86</td>
                <td class="tg-baqh">0.5043</td>
                <td class="tg-baqh">49.72</td>
              </tr>
              <tr>
                <td class="tg-baqh">Old</td>
                <td class="tg-baqh">0.5917</td>
                <td class="tg-baqh">43.27</td>
                <td class="tg-baqh">0.2636</td>
                <td class="tg-baqh">64.71</td>
                <td class="tg-baqh">0.5650</td>
                <td class="tg-baqh">47.76</td>
              </tr>
              <tr>
                <td class="tg-baqh">Woman</td>
                <td class="tg-baqh">0.5621</td>
                <td class="tg-baqh">42.12</td>
                <td class="tg-baqh">0.2261</td>
                <td class="tg-baqh">57.70</td>
                <td class="tg-baqh">0.4861</td>
                <td class="tg-baqh">52.00</td>
              </tr>
              <tr>
                <td class="tg-baqh">Man</td>
                <td class="tg-baqh">0.5438</td>
                <td class="tg-baqh">42.63</td>
                <td class="tg-baqh">0.1971</td>
                <td class="tg-baqh">52.16</td>
                <td class="tg-baqh">0.4966</td>
                <td class="tg-baqh">50.36</td>
              </tr>
              <tr>
                <td class="tg-baqh">Average</td>
                <td class="tg-baqh">0.5774</td>
                <td class="tg-baqh">42.49</td>
                <td class="tg-baqh">0.2434</td>
                <td class="tg-baqh">58.36</td>
                <td class="tg-baqh">0.5130</td>
                <td class="tg-baqh">49.96</td>
              </tr>
            </tbody>
        </table>
        </div>
      </div>
    </div>
  </section>
  <!-- Results -->

  <section class="section">
    <div class="container is-max-desktop">
      <h2 class="title is-3">Retention Text Score Results</h2>
      <div class="columns is-centered">
        <div class="column container-centered">
          <table class="tg" border="1" style="width:100%;">
            <caption><strong>Table 2.</strong> Jailbreak risk evaluation of VLMs to text attacks. This table presents a comparison among three VLMs — MiniGPT-4, LLaVA, and InstructBLIP — with regards to their Retention Scores (Retention-T), Attack Success Rates.</caption>
            <thead>
              <tr>
                <th class="tg-amwm">VLM</th>
                <th class="tg-baqh">Retention-T</th>
                <th class="tg-baqh">Attack Success Rate</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td class="tg-baqh">MiniGPT-4</td>
                <td class="tg-baqh">0.2073</td>
                <td class="tg-baqh">46.1%</td>
              </tr>
              <tr>
                <td class="tg-baqh">LLaVA</td>
                <td class="tg-baqh">0.342</td>
                <td class="tg-baqh">9.4%</td>
              </tr>
              <tr>
                <td class="tg-baqh">InstructBLIP</td>
                <td class="tg-baqh">0.164</td>
                <td class="tg-baqh">84.5%</td>
              </tr>
            </tbody>
          </table>
        </div>
      </div>
    </div>
  </section>










  
<!-- Model Ranking Comparison Section -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">API Model Analysis</h2>
    <div class="columns is-centered">
      <div class="column is-full-width">
        <div class="content has-text-justified">
          <p>
            Assessing the robustness of black-box VLMs is of paramount importance, particularly since these models are commonly deployed as APIs, restricting users and auditors to inferential interactions. This constraint not only makes adversarial attacks challenging but also underscores the necessity for robust evaluation methods that do not depend on internal model access. In this context, our research deploys the Retention-I score to examine the resilience of APIs against synthetically produced facial images with concealed attributes, which are typically employed in model inferences.
          </p>
          
          <p>
            Our evaluation methodology was applied to two prominent online vision language APIs: GPT-4V and Gemini Pro Vision. Noteworthy is that for Gemini Pro Vision, the API provides settings to adjust the model's threshold for blocking harmful content, with options ranging from blocking none to most (none, few, some, and most). We tested this feature by running identical prompts and images across these settings, leading to an evaluation of five model configurations.
          </p>

          <p>
            The assessment centered around the Retention-I score, using a balanced set of synthetic faces that included young, old, male, and female groups. These images were generated using the state-of-the-art Stable Diffusion model, with each group contributing 100 images. A unique aspect of Google's Gemini is its error messaging system, which, in lieu of producing toxic outputs, provides rationales for prompt blocking. In our study, such blocks were interpreted as a zero toxicity score, aligning with the model's safeguarding strategy.
          </p>

          <table class="table is-bordered is-striped is-narrow is-hoverable is-fullwidth">
            <caption><strong>Table 3.</strong> Retention-I analysis of VLM APIs. Each group consists of 100 images with 20 continuation prompts.</caption>
            <thead>
              <tr>
                <th></th>
                <th>Young</th>
                <th>Old</th>
                <th>Woman</th>
                <th>Man</th>
                <th>Average</th>
              </tr>
            </thead>
            <tbody>
              <tr>
                <td>GPT-4v</td>
                <td>1.2043</td>
                <td>1.2077</td>
                <td>1.2067</td>
                <td>1.2052</td>
                <td>1.2059</td>
              </tr>
              <tr>
                <td>Gemini-None</td>
                <td>0.3025</td>
                <td>0.2432</td>
                <td>0.2300</td>
                <td>0.2126</td>
                <td>0.2471</td>
              </tr>
              <tr>
                <td>Gemini-Few</td>
                <td>1.1955</td>
                <td>1.1806</td>
                <td>1.1972</td>
                <td>1.1987</td>
                <td>1.1930</td>
              </tr>
              <tr>
                <td>Gemini-Some</td>
                <td>1.2322</td>
                <td>1.2486</td>
                <td>1.2325</td>
                <td>1.2382</td>
                <td>1.2379</td>
              </tr>
              <tr>
                <td>Gemini-Most</td>
                <td>1.2449</td>
                <td>1.2494</td>
                <td>1.2388</td>
                <td>1.2479</td>
                <td>1.2453</td>
              </tr>
            </tbody>
          </table>

          <p>
            Our results in Table 3 reveal intriguing variations across different APIs. For instance, Gemini-None exhibited notable performance contrasts when comparing Old versus Young cohorts. Other models showcased more uniform robustness levels across demographic groups. Also, Our analysis positions the robustness of GPT-4V somewhere between the some and most safety settings of Gemini. This correlation not only validates the efficacy of Gemini's protective configurations but also underscores the impact of safety thresholds on toxicity recognition, as quantified by our scoring method.
          </p>

          <p>
            This robustness evaluation illustrates that Retention-I is a pivotal tool for analyzing group-level resilience in models with restricted access, enabling discreet and efficacious scrutiny of their defenses.
          </p>
        </div>
      </div>
    </div>
  </div>
</section>
<!-- Model Ranking Comparison Section -->

<!-- GREAT Score vs CW Attack Comparison Section -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">GREAT Score vs CW Attack Comparison</h2>
    <div class="columns is-centered">
      <div class="column container-centered">
        <div>
          <img src="./static/images/new_figure_2_2.png"
               class="method_overview"
               alt="Comparison of local GREAT Score and CW attack"/>
          <p>
            <strong>Figure 2.</strong> Comparison of local GREAT Score and CW attack in L<sub>2</sub> perturbation on CIFAR-10 with Rebuffi_extra model. 
            The x-axis is the image id. The result shows the local GREAT Score is indeed a lower bound of the perturbation level found by CW attack.
          </p>
        </div>
      </div>
    </div>
  </div>
</section>
<!-- GREAT Score vs CW Attack Comparison Section -->

<!-- Run-time Analysis Section -->
<section class="section">
  <div class="container is-max-desktop">
    <h2 class="title is-3">Run-time Analysis</h2>
    <div class="columns is-centered">
      <div class="column container-centered">
        <div>
          <img src="./static/images/plot1.png"
               class="method_overview"
               alt="Run-time improvement comparison"/>
          <p>
            <strong>Figure 4.</strong> Run-time improvement (Retention Score over Visual and Text attacks).
          </p>
          <div class="content has-text-justified">
            <p>
              Figure 4 compares the run-time efficiency of Retention Score over adversarial attacks in [1] and [2]. 
              We show the improvement ratio of their average per-sample run-time (wall clock time of Retention Score/Adversarial Attack is reported in Appendix) 
              and observe around 2-30 times improvement, validating the computational efficiency of Retention Score.
            </p>
          </div>
        </div>
      </div>
    </div>
  </div>
</section>
<!-- Run-time Analysis Section -->














<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@article{li2024greatscore,
  title     = {GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models},
  author    = {Zaitang, Li and Pin-Yu, Chen and Tsung-Yi, Ho},
  journal   = {NeurIPS},
  year      = {2024},
}</code></pre>
  </div>
</section>


<footer class="footer">
  <div class="container">
    <!-- <div class="content has-text-centered">
      <a class="icon-link" target="_blank"
         href="./static/videos/nerfies_paper.pdf">
        <i class="fas fa-file-pdf"></i>
      </a>
      <a class="icon-link" href="https://github.com/keunhong" target="_blank" class="external-link" disabled>
        <i class="fab fa-github"></i>
      </a>
    </div> -->
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" target="_blank"
                                                href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
            Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
          <p>
            This means you are free to borrow the <a target="_blank"
              href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
            we just ask that you link back to this page in the footer.
            Please remember to remove the analytics code included in the header of the website which
            you do not want on your website.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>