Spaces:
Running
Running
File size: 5,948 Bytes
6f6118e 08fed43 6f6118e 08fed43 6f6118e b4e1f6b 6f6118e 77592b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from transformers import RobertaForSequenceClassification, AutoTokenizer
import torch
import docx2txt
import pandas as pd
import matplotlib.pyplot as plt
import openpyxl
from openpyxl.styles import Font, Color, PatternFill
from openpyxl.styles.colors import WHITE
import gradio as gr
import underthesea
# Load the model and tokenizer
senti_model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment")
senti_tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False)
def segmentation(sentences):
segmented_sentences = []
for sentence in sentences:
segmented_sentence = underthesea.word_tokenize(sentence)
segmented_sentences.append(' '.join(segmented_sentence))
return segmented_sentences
def analyze(sentence):
input_ids = torch.tensor([senti_tokenizer.encode(sentence)])
with torch.no_grad():
out = senti_model(input_ids)
results = out.logits.softmax(dim=-1).tolist()
return results[0]
def read_file(docx):
try:
text = docx2txt.process(docx)
lines = text.split('\n')
lines = [line.strip() for line in lines]
lines = [line for line in lines if line]
return lines
except Exception as e:
print(f"Error reading file: {e}")
def process_file(docx):
# Read the file and segment the sentences
sentences = read_file(docx)
segmented_sentences = segmentation(sentences)
# Analyze the sentiment of each sentence
results = []
for sentence in segmented_sentences:
results.append(analyze(sentence))
# Create a DataFrame from the results
df = pd.DataFrame(results, columns=['Negative', 'Neutral', 'Positive'])
df['Text'] = read_file(docx)
# Generate the pie chart and excel file
pie_chart_name = generate_pie_chart(df)
excel_file_path = generate_excel_file(df)
return excel_file_path, pie_chart_name
def analyze_text(text, docx_file):
if text:
# Perform analysis on the text
segmented_text = segmentation([text])
results = []
for sentence in segmented_text:
results.append(analyze(sentence))
df = pd.DataFrame(results, columns=['Negative', 'Neutral', 'Positive'])
df['Text'] = [text]
pie_chart_name = generate_pie_chart(df)
excel_file_path = generate_excel_file(df)
return excel_file_path, pie_chart_name
elif docx_file:
return process_file(docx_file.name)
else:
# No input provided
return None
def generate_pie_chart(df):
# Calculate the average scores
neg_avg = df['Negative'].mean()
neu_avg = df['Neutral'].mean()
pos_avg = df['Positive'].mean()
# Create a new DataFrame with the average scores
avg_df = pd.DataFrame({'Sentiment': ['Negative', 'Neutral', 'Positive'],
'Score': [neg_avg, neu_avg, pos_avg]})
# Set custom colors for the pie chart
colors = ['#BDBDBD', '#87CEFA', '#9ACD32']
# Create a pie chart showing the average scores
plt.pie(avg_df['Score'], labels=avg_df['Sentiment'], colors=colors, autopct='%1.1f%%')
plt.title('Average Scores by Sentiment')
# Save the pie chart as an image file in the static folder
pie_chart_name = 'pie_chart.png'
plt.savefig(pie_chart_name)
plt.close()
return pie_chart_name
def generate_excel_file(df):
# Create a new workbook and worksheet
wb = openpyxl.Workbook()
ws = wb.active
# Add column headers to the worksheet
headers = ['Negative', 'Neutral', 'Positive', 'Text']
for col_num, header in enumerate(headers, 1):
cell = ws.cell(row=1, column=col_num)
cell.value = header
cell.font = Font(bold=True)
# Set up cell formatting for each sentiment
fill_dict = {
'Negative': PatternFill(start_color='BDBDBD', end_color='BDBDBD', fill_type='solid'),
'Neutral': PatternFill(start_color='87CEFA', end_color='87CEFA', fill_type='solid'),
'Positive': PatternFill(start_color='9ACD32', end_color='9ACD32', fill_type='solid')
}
# Loop through each row of the input DataFrame and write data to the worksheet
for row_num, row_data in df.iterrows():
# Calculate the highest score and corresponding sentiment for this row
sentiment_cols = ['Negative', 'Neutral', 'Positive']
scores = [row_data[col] for col in sentiment_cols]
max_score = max(scores)
max_index = scores.index(max_score)
sentiment = sentiment_cols[max_index]
# Write the data to the worksheet
for col_num, col_data in enumerate(row_data, 1):
cell = ws.cell(row=row_num + 2, column=col_num)
cell.value = col_data
if col_num in [1, 2, 3]:
if col_data == max_score:
cell.fill = fill_dict[sentiment]
if col_num == 4:
fill = fill_dict[sentiment]
font_color = WHITE if fill.start_color.rgb == 'BDBDBD' else Color('000000')
cell.fill = fill
cell.font = Font(color=font_color)
if col_data == max_score:
cell.fill = fill_dict[sentiment]
# Save the workbook
excel_file_path = 'result.xlsx'
wb.save(excel_file_path)
return excel_file_path
inputs = [
gr.Textbox(label="Nhập Văn Bản bằng Tiếng Việt để trải nghiệm ngay"),
gr.File(label="Chọn Tệp File Word(docx) Bạn Muốn Phân Tích")
]
outputs = [
gr.File(label="Kết Quả Phân Tích Excel"),
gr.Image(type="filepath", label="Biểu đồ")
]
interface = gr.Interface(
fn=analyze_text,
inputs=inputs,
outputs=outputs,
title="Phân Tích Cảm xúc thông qua Hội Thoại bằng Tiếng Việt",
allow_flagging="never" # Disable flag button
)
if __name__ == "__main__":
interface.launch()
|