from transformers import RobertaForSequenceClassification, AutoTokenizer import torch import docx2txt import pandas as pd import matplotlib.pyplot as plt import openpyxl from openpyxl.styles import Font, Color, PatternFill from openpyxl.styles.colors import WHITE import gradio as gr import underthesea import re # Load the model and tokenizer senti_model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment") senti_tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False) def segmentation(text): # Split text by periods and newlines sentences = re.split(r'[.\n]', text) segmented_sentences = [] for sentence in sentences: sentence = sentence.strip() if sentence: # Ignore empty sentences segmented_sentence = underthesea.word_tokenize(sentence) segmented_sentences.append(' '.join(segmented_sentence)) return segmented_sentences def analyze(sentence): input_ids = torch.tensor([senti_tokenizer.encode(sentence)]) with torch.no_grad(): out = senti_model(input_ids) results = out.logits.softmax(dim=-1).tolist() return results[0] def read_file(docx): try: text = docx2txt.process(docx) return text except Exception as e: print(f"Error reading file: {e}") def process_file(docx): # Read the file text = read_file(docx) # Segment the text into sentences segmented_sentences = segmentation(text) # Analyze the sentiment of each sentence results = [] for sentence in segmented_sentences: results.append(analyze(sentence)) # Create a DataFrame from the results df = pd.DataFrame(results, columns=['Negative', 'Neutral', 'Positive']) df['Text'] = segmented_sentences # Generate the pie chart and excel file pie_chart_name = generate_pie_chart(df) excel_file_path = generate_excel_file(df) return excel_file_path, pie_chart_name def analyze_text(text, docx_file): if text: # Segment the text into sentences segmented_text = segmentation(text) results = [] for sentence in segmented_text: results.append(analyze(sentence)) df = pd.DataFrame(results, columns=['Negative', 'Neutral', 'Positive']) df['Text'] = segmented_text pie_chart_name = generate_pie_chart(df) excel_file_path = generate_excel_file(df) return excel_file_path, pie_chart_name elif docx_file: return process_file(docx_file.name) else: # No input provided return None def generate_pie_chart(df): # Calculate the average scores neg_avg = df['Negative'].mean() neu_avg = df['Neutral'].mean() pos_avg = df['Positive'].mean() # Create a new DataFrame with the average scores avg_df = pd.DataFrame({'Sentiment': ['Negative', 'Neutral', 'Positive'], 'Score': [neg_avg, neu_avg, pos_avg]}) # Set custom colors for the pie chart colors = ['#BDBDBD', '#87CEFA', '#9ACD32'] # Create a pie chart showing the average scores plt.pie(avg_df['Score'], labels=avg_df['Sentiment'], colors=colors, autopct='%1.1f%%') plt.title('Average Scores by Sentiment') # Save the pie chart as an image file pie_chart_name = 'pie_chart.png' plt.savefig(pie_chart_name) plt.close() return pie_chart_name def generate_excel_file(df): # Create a new workbook and worksheet wb = openpyxl.Workbook() ws = wb.active # Add column headers to the worksheet headers = ['Negative', 'Neutral', 'Positive', 'Text'] for col_num, header in enumerate(headers, 1): cell = ws.cell(row=1, column=col_num) cell.value = header cell.font = Font(bold=True) # Set up cell formatting for each sentiment fill_dict = { 'Negative': PatternFill(start_color='BDBDBD', end_color='BDBDBD', fill_type='solid'), 'Neutral': PatternFill(start_color='87CEFA', end_color='87CEFA', fill_type='solid'), 'Positive': PatternFill(start_color='9ACD32', end_color='9ACD32', fill_type='solid') } # Loop through each row of the input DataFrame and write data to the worksheet for row_num, row_data in df.iterrows(): # Calculate the highest score and corresponding sentiment for this row sentiment_cols = ['Negative', 'Neutral', 'Positive'] scores = [row_data[col] for col in sentiment_cols] max_score = max(scores) max_index = scores.index(max_score) sentiment = sentiment_cols[max_index] # Write the data to the worksheet for col_num, col_data in enumerate(row_data, 1): cell = ws.cell(row=row_num + 2, column=col_num) cell.value = col_data if col_num in [1, 2, 3]: if col_data == max_score: cell.fill = fill_dict[sentiment] if col_num == 4: fill = fill_dict[sentiment] font_color = WHITE if fill.start_color.rgb == 'BDBDBD' else Color('000000') cell.fill = fill cell.font = Font(color=font_color) if col_data == max_score: cell.fill = fill_dict[sentiment] # Save the workbook excel_file_path = 'result.xlsx' wb.save(excel_file_path) return excel_file_path def analyze_from_text(text): return analyze_text(text, None) def analyze_from_file(docx_file): return analyze_text(None, docx_file) inputs = [ gr.Textbox(label="Nhập Văn Bản bằng Tiếng Việt để trải nghiệm ngay"), gr.File(label="Chọn Tệp File Word(docx) Bạn Muốn Phân Tích") ] outputs = [ gr.File(label="Kết Quả Phân Tích Excel"), gr.Image(type="filepath", label="Biểu đồ") ] interface = gr.Interface( fn=analyze_text, inputs=inputs, outputs=outputs, title="Phân Tích Cảm xúc thông qua Hội Thoại bằng Tiếng Việt", allow_flagging="never" # Disable flag button ) if __name__ == "__main__": interface.launch()