sentimentwebapp / app.py
TuanScientist's picture
Update app.py
4411cc6 verified
from transformers import RobertaForSequenceClassification, AutoTokenizer
import torch
import docx2txt
import pandas as pd
import matplotlib.pyplot as plt
import openpyxl
from openpyxl.styles import Font, Color, PatternFill
from openpyxl.styles.colors import WHITE
import gradio as gr
import underthesea
# Load the model and tokenizer
senti_model = RobertaForSequenceClassification.from_pretrained("wonrax/phobert-base-vietnamese-sentiment")
senti_tokenizer = AutoTokenizer.from_pretrained("wonrax/phobert-base-vietnamese-sentiment", use_fast=False)
# Word segmented
def segmentation(sentences):
segmented_sentences = []
for sentence in sentences:
segmented_sentence = underthesea.word_tokenize(sentence)
segmented_sentences.append(' '.join(segmented_sentence))
return segmented_sentences
# File read
def read_file(docx):
try:
text = docx2txt.process(docx)
lines = text.split('\n')
lines = [line.strip() for line in lines]
lines = [line for line in lines if line]
return lines # add this line
except Exception as e:
print(f"Error reading file: {e}")
# Define a function to analyze the sentiment of a text
def analyze(sentence):
input_ids = torch.tensor([senti_tokenizer.encode(sentence)])
with torch.no_grad():
out = senti_model(input_ids)
results = out.logits.softmax(dim=-1).tolist()
return results[0]
def file_analysis(docx):
# Read the file and segment the sentences
sentences = read_file(docx)
segmented_sentences = segmentation(sentences)
# Analyze the sentiment of each sentence
results = []
for sentence in segmented_sentences:
results.append(analyze(sentence))
return results
def generate_pie_chart(df):
# Calculate the average scores
neg_avg = df['Negative'].mean()
pos_avg = df['Positive'].mean()
neu_avg = df['Neutral'].mean()
# Create a new DataFrame with the average scores
avg_df = pd.DataFrame({'Sentiment': ['Negative', 'Positive', 'Neutral'],
'Score': [neg_avg, pos_avg, neu_avg]})
# Set custom colors for the pie chart
colors = ['#BDBDBD', '#9ACD32', '#87CEFA']
# Create a pie chart showing the average scores
plt.pie(avg_df['Score'], labels=avg_df['Sentiment'], colors=colors, autopct='%1.1f%%')
plt.title('Average Scores by Sentiment')
# Save the pie chart as an image file in the static folder
pie_chart_name = 'pie_chart.png'
plt.savefig(pie_chart_name)
plt.close()
return pie_chart_name
def generate_excel_file(df):
# Create a new workbook and worksheet
wb = openpyxl.Workbook()
ws = wb.active
# Add column headers to the worksheet
headers = ['Negative', 'Positive', 'Neutral', 'Text']
for col_num, header in enumerate(headers, 1):
cell = ws.cell(row=1, column=col_num)
cell.value = header
cell.font = Font(bold=True)
# Set up cell formatting for each sentiment
fill_dict = {
'Negative': PatternFill(start_color='BDBDBD', end_color='BDBDBD', fill_type='solid'),
'Positive': PatternFill(start_color='9ACD32', end_color='9ACD32', fill_type='solid'),
'Neutral': PatternFill(start_color='87CEFA', end_color='87CEFA', fill_type='solid')
}
# Loop through each row of the input DataFrame and write data to the worksheet
for row_num, row_data in df.iterrows():
# Calculate the highest score and corresponding sentiment for this row
sentiment_cols = ['Negative', 'Positive', 'Neutral']
scores = [row_data[col] for col in sentiment_cols]
max_score = max(scores)
max_index = scores.index(max_score)
sentiment = sentiment_cols[max_index]
# Write the data to the worksheet
for col_num, col_data in enumerate(row_data, 1):
cell = ws.cell(row=row_num + 2, column=col_num)
cell.value = col_data
if col_num in [1, 2, 3]:
if col_data == max_score:
cell.fill = fill_dict[sentiment]
if col_num == 4:
fill = fill_dict[sentiment]
font_color = WHITE if fill.start_color.rgb == 'BDBDBD' else Color('000000')
cell.fill = fill
cell.font = Font(color=font_color)
if col_data == max_score:
cell.fill = fill_dict[sentiment]
# Save the workbook
excel_file_path = 'result.xlsx'
wb.save(excel_file_path)
return excel_file_path
def process_file(docx):
# Perform analysis on the file
results = file_analysis(docx)
# Create a DataFrame from the results
df = pd.DataFrame(results, columns=['Negative', 'Positive', 'Neutral'])
df['Text'] = read_file(docx)
# Generate the pie chart and excel file
pie_chart_name = generate_pie_chart(df)
excel_file_path = generate_excel_file(df)
return pie_chart_name, excel_file_path
def analyze_file(docx_file):
# Process the file and generate the output files
pie_chart_name, excel_file_path = process_file(docx_file.name)
# Return the file paths for the pie chart and excel file
return excel_file_path, pie_chart_name
inputs = gr.File(label="Chọn Tệp Bạn Muốn Phân Tích")
outputs = [
gr.File(label="Kết Quả Phân Tích Excel"),
gr.Image(type="filepath", label="Thông Số Phân Tích")
]
interface = gr.Interface(
fn=analyze_file,
inputs=inputs,
outputs=outputs,
title="Sentiment Analysis",
allow_flagging="never" # Disable flag button
)
if __name__ == "__main__":
interface.launch()