Tuana commited on
Commit
970c4fe
·
1 Parent(s): a402ee4

separate the llms

Browse files
Files changed (1) hide show
  1. utils/haystack.py +5 -3
utils/haystack.py CHANGED
@@ -33,6 +33,8 @@ def start_haystack(huggingface_token):
33
  llm.warm_up()
34
  # start_keyword_pipeline(llm)
35
  # start_qa_pipeline(llm)
 
 
36
  keyword_prompt_template = """
37
  Your task is to convert the follwing question into 3 keywords that can be used to find relevant medical research papers on PubMed.
38
  Here is an examples:
@@ -65,10 +67,10 @@ Articles:
65
  pipe = Pipeline()
66
 
67
  pipe.add_component("keyword_prompt_builder", keyword_prompt_builder)
68
- pipe.add_component("keyword_llm", llm)
69
  pipe.add_component("pubmed_fetcher", fetcher)
70
  pipe.add_component("prompt_builder", prompt_builder)
71
- pipe.add_component("llm", llm)
72
 
73
  pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
74
  pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
@@ -83,7 +85,7 @@ def query(query, _pipeline):
83
  try:
84
  result = _pipeline.run(data={"keyword_prompt_builder":{"question":query},
85
  "prompt_builder":{"question": query},
86
- "llm":{"generation_kwargs": {"max_new_tokens": 500}}})
87
  except Exception as e:
88
  result = ["Please make sure you are providing a correct, public Mastodon account"]
89
  return result
 
33
  llm.warm_up()
34
  # start_keyword_pipeline(llm)
35
  # start_qa_pipeline(llm)
36
+ keyword_llm = llm
37
+ answer_llm = llm
38
  keyword_prompt_template = """
39
  Your task is to convert the follwing question into 3 keywords that can be used to find relevant medical research papers on PubMed.
40
  Here is an examples:
 
67
  pipe = Pipeline()
68
 
69
  pipe.add_component("keyword_prompt_builder", keyword_prompt_builder)
70
+ pipe.add_component("keyword_llm", keyword_llm)
71
  pipe.add_component("pubmed_fetcher", fetcher)
72
  pipe.add_component("prompt_builder", prompt_builder)
73
+ pipe.add_component("llm", answer_llm)
74
 
75
  pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
76
  pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
 
85
  try:
86
  result = _pipeline.run(data={"keyword_prompt_builder":{"question":query},
87
  "prompt_builder":{"question": query},
88
+ "answer_llm":{"generation_kwargs": {"max_new_tokens": 500}}})
89
  except Exception as e:
90
  result = ["Please make sure you are providing a correct, public Mastodon account"]
91
  return result